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Introduction to Uncertain Elements
Uncertain elements (also called uncertain Control Design Blocks) are the building blocks used to form
uncertain matrix objects and uncertain system objects. There are six types of uncertain blocks,
summarized in the following table.

Function Description
ureal Uncertain real parameter on page 1-4
ultidyn Uncertain, linear, time-invariant dynamics on page 1-9
umargin Uncertain gain and phase on page 1-12
ucomplex Uncertain complex parameter on page 1-15
ucomplexm Uncertain complex matrix on page 1-15
udyn Unmodeled dynamics on page 1-19

To build models uncertain systems, you combine these control design blocks with fixed dynamic
elements to create uncertain state-space (uss) models.

All of the elements have properties, which are accessed through get and set methods. This get and
set interface mimics the Control System Toolbox™ and MATLAB® Handle Graphics® behavior. For
instance, get(a,'PropertyName') is the same as a.PropertyName, and
set(b,'PropertyName',Value) is the same as b.PropertyName = value. Functionality also
includes tab-completion and case-insensitive, partial name property matching.

For ureal, ucomplex and ucomplexm elements, the syntax is

p1 = ureal(name,NominalValue,Prop1,val1,Prop2,val2,...); 
p2 = ucomplex(name,NominalValue,Prop1,val1,Prop2,val2,...); 
p3 = ucomplexm(name,NominalValue,Prop1,val1,Prop2,val2,...); 

For ultidyn and udyn, the NominalValue is fixed, so the syntax is

p4 = ultidyn(name,ioSize,Prop1,val1,Prop2,val2,...); 
p5 = udyn(name,ioSize,Prop1,val1,Prop2,val2,...); 

For umargin blocks, you provide the range of gain variation you want to model. umargin interprets
this range as a disk-based gain margin. To get a disk-based gain margin from a target gain and phase
variation, use getDGM.

DGM = getDGM(GM,PM,'balanced);
p6 = umargin(name,DGM,Prop1,val1,...);

For ureal, ultidyn, umargin, ucomplex and ucomplexm elements, the command usample will
generate a random instance (i.e., not uncertain) of the element, within its modeled range. For
example,

usample(p1) 

creates a random instance of the uncertain real parameter p1. With an integer argument, whole
arrays of instances can be created. For instance

usample(p4,100) 

1 Building Uncertain Models

1-2



generates an array of 100 instances of the ultidyn object p4. See “Generate Samples of Uncertain
Systems” on page 1-61 to learn more about usample.

See Also
ultidyn | umargin | ureal

Related Examples
• “Create Models of Uncertain Systems”
• “Uncertain Real Parameters” on page 1-4
• Uncertain gain and phase on page 1-12
• “Uncertain LTI Dynamics Elements” on page 1-9
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Uncertain Real Parameters
An uncertain real parameter, ureal, is the Control Design Block that represents a real number whose
value is uncertain.

Properties of Uncertain Real Parameters
Uncertain real parameters have a name (the Name property), and a nominal value (the
NominalValue property). Several other properties (PlusMinus, Range, Percentage) describe the
uncertainty in parameter values.

All properties of a ureal can be accessed through get and set. The properties are:

Properties Meaning Class
Name Internal name char
NominalValue Nominal value of element double
Mode Signifies which description (from'PlusMinus',

'Range', 'Percentage') of uncertainty is
invariant when NominalValue is changed

char

PlusMinus Additive variation scalar or 1x2 double
Range Numerical range 1x2 double
Percentage Additive variation (% of absolute value of nominal) scalar or 1x2 double
AutoSimplify 'off' | {'basic'} |'full' char

The properties Range, Percentage and PlusMinus are all automatically synchronized. If the
nominal value is 0, then the Mode cannot be Percentage. The Mode property controls what aspect of
the uncertainty remains unchanged when NominalValue is changed. Assigning to any of Range/
Percentage/PlusMinus changes the value, but does not change the mode.

The AutoSimplify property controls how expressions involving the real parameter are simplified.
Its default value is 'basic', which means elementary methods of simplification are applied as
operations are completed. Other values for AutoSimplify are 'off' (no simplification performed)
and 'full' (model-reduction-like techniques are applied). See “Simplifying Representation of
Uncertain Objects” on page 1-58 to learn more about the AutoSimplify property and the
command simplify.

If no property/value pairs are specified, default values are used. The default Mode is PlusMinus, and
the default value of PlusMinus is [-1 1]. Some examples are shown below. In many cases, the full
property name is not specified, taking advantage of the case-insensitive, partial name property
matching.

Create Uncertain Real Parameters
This example shows how to create uncertain real parameters, modify properties such as range of
uncertainty, and sample uncertain parameters.

Create an uncertain real parameter, nominal value 3, with default values for all unspecified properties
(including plus/minus variability of 1).

a = ureal('a',3)
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a = 
  Uncertain real parameter "a" with nominal value 3 and variability [-1,1].

View the properties and their values, and note that the Range and Percentage descriptions of
variability are automatically maintained.

get(a)

    NominalValue: 3
            Mode: 'PlusMinus'
           Range: [2 4]
       PlusMinus: [-1 1]
      Percentage: [-33.3333 33.3333]
    AutoSimplify: 'basic'
            Name: 'a'

Create an uncertain real parameter, nominal value 2, with 20% variability. Again, view the properties,
and note that the Range and PlusMinus descriptions of variability are automatically maintained.

b = ureal('b',2,'Percentage',20) 

b = 
  Uncertain real parameter "b" with nominal value 2 and variability [-20,20]%.

get(b)

    NominalValue: 2
            Mode: 'Percentage'
           Range: [1.6000 2.4000]
       PlusMinus: [-0.4000 0.4000]
      Percentage: [-20 20]
    AutoSimplify: 'basic'
            Name: 'b'

Change the range of the parameter. All descriptions of variability are automatically updated, while
the nominal value remains fixed. Although the change in variability was accomplished by specifying
the Range, the Mode is unaffected, and remains Percentage.

b.Range = [1.9 2.3];
get(b)

    NominalValue: 2
            Mode: 'Percentage'
           Range: [1.9000 2.3000]
       PlusMinus: [-0.1000 0.3000]
      Percentage: [-5.0000 15.0000]
    AutoSimplify: 'basic'
            Name: 'b'

As mentioned, the Mode property signifies what aspect of the uncertainty remains unchanged when
NominalValue is modified. Hence, if a real parameter is in Percentage mode, then the Range and
PlusMinus properties are determined from the Percentage property and NominalValue.
Changing NominalValue preserves the Percentage property, and automatically updates the Range
and PlusMinus properties.

b.NominalValue = 2.2;
get(b)
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    NominalValue: 2.2000
            Mode: 'Percentage'
           Range: [2.0900 2.5300]
       PlusMinus: [-0.1100 0.3300]
      Percentage: [-5.0000 15.0000]
    AutoSimplify: 'basic'
            Name: 'b'

Create an uncertain parameter with an asymmetric variation about its nominal value. Examine the
properties to confirm the asymmetric range.

c = ureal('c',-5,'Percentage',[-20 30]); 
get(c)

    NominalValue: -5
            Mode: 'Percentage'
           Range: [-6 -3.5000]
       PlusMinus: [-1 1.5000]
      Percentage: [-20 30]
    AutoSimplify: 'basic'
            Name: 'c'

Create an uncertain parameter, specifying variability with Percentage, but force the Mode to be
Range.

d = ureal('d',-1,'Mode','Range','Percentage',[-40 60]); 
get(d)

    NominalValue: -1
            Mode: 'Range'
           Range: [-1.4000 -0.4000]
       PlusMinus: [-0.4000 0.6000]
      Percentage: [-40 60]
    AutoSimplify: 'basic'
            Name: 'd'

Finally, create an uncertain real parameter, and set the AutoSimplify property to 'full'.

e = ureal('e',10,'PlusMinus',[-23],'Mode','Percentage','AutoSimplify','Full') 

e = 
  Uncertain real parameter "e" with nominal value 10 and variability [-230,230]%.

get(e)

    NominalValue: 10
            Mode: 'Percentage'
           Range: [-13 33]
       PlusMinus: [-23 23]
      Percentage: [-230 230]
    AutoSimplify: 'full'
            Name: 'e'

Specifying conflicting values for Range/Percentage/PlusMinus when creating a ureal element
does not result in an error. In this case, the last specified property is used. This last occurrence also
determines the Mode, unless Mode is explicitly specified, in which case that is used, regardless of the
property/value pairs ordering.
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f = ureal('f',3,'PlusMinus',[-2 1],'Percentage',40) 

f = 
  Uncertain real parameter "f" with nominal value 3 and variability [-40,40]%.

g = ureal('g',2,'PlusMinus',[-2 1],'Mode','Range','Percentage',40) 

g = 
  Uncertain real parameter "g" with nominal value 2 and range [1.2,2.8].

g.Mode

ans = 
'Range'

Create an uncertain real parameter, use usample to generate 1000 instances (resulting in a 1-by-1-
by-1000 array), reshape the array, and plot a histogram, with 20 bins (within the range of 2 to 4).

h = ureal('h',3); 
hsample = usample(h,1000); 
hist(reshape(hsample,[1000 1]),20);

Make the range nonsymmetric about the nominal value, and repeat the sampling, and histogram plot
(with 40 bins over the range of 2-to-6)
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h.Range = [2 6]; 
hsample = usample(h,1000); 
hist(reshape(hsample,[1000 1]),40);

The distribution is still uniform. The distribution used by usample is uniform in the actual value of
the uncertain real parameter. However, highly skewed ranges can lead to poor numeric conditioning
and poor results. Therefore, for meaningful results, avoid highly skewed ranges where the nominal
value is orders of magnitude closer to one end of the range than to the other.

There is no notion of an empty ureal (or any other uncertain element, for that matter). ureal, by
itself, creates an element named 'UNNAMED', with default property values.

See Also
ureal

Related Examples
• “System with Uncertain Parameters”
• “Uncertain LTI Dynamics Elements” on page 1-9

1 Building Uncertain Models

1-8



Uncertain LTI Dynamics Elements
Uncertain linear, time-invariant objects, ultidyn, are used to represent unknown linear, time-
invariant dynamics, whose only known attributes are bounds on their frequency response.

Create Uncertain LTI Dynamics
You can create a 1-by-1 (scalar) positive-real uncertain linear dynamics element, whose frequency
response always has real part greater than -0.5. Set the SampleStateDimension property to 5. Plot
a Nyquist plot of 30 instances of the element.

g = ultidyn('g',[1 1],'Type','Positivereal','Bound',-0.5); 
g.SampleStateDimension = 5;

nyquist(usample(g,30)) 
xlim([-2 10]) 
ylim([-6 6]);

Properties of ultidyn Elements
Uncertain linear, time-invariant objects have an internal name (the Name property), and are created
by specifying their size (number of outputs and number of inputs).
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The property Type specifies whether the known attributes about the frequency response are related
to gain or phase. The property Type may be 'GainBounded' or 'PositiveReal'. The default value
is 'GainBounded'.

The property Bound is a single number, which along with Type, completely specifies what is known
about the uncertain frequency response. Specifically, if Δ is an ultidyn element, and if γ denotes the
value of the Bound property, then the element represents the set of all stable, linear, time-invariant
systems whose frequency response satisfies certain conditions:

If Type is 'GainBounded', σ̇ Δ ω ≤ γ for all frequencies. When Type is 'GainBounded', the
default value for Bound (i.e., γ) is 1. The NominalValue of Δ is always the 0-matrix.

If Type is 'PositiveReal', Δ(ω) + Δ*(ω) ≥ 2γ· for all frequencies. When Type is 'PositiveReal',
the default value for Bound (i.e., γ) is 0. The NominalValue is always (γ + 1 +2|γ|)I.

All properties of a ultidyn are accessible with get and set (although the NominalValue is
determined from Type and Bound, and not accessible with set). The properties are

Properties Meaning Class
Name Internal Name char
NominalValue Nominal value of element See above
Type 'GainBounded' |'PositiveReal' char
Bound Norm bound or minimum real scalar double
SampleStateDimensi
on

State-space dimension of random samples of this
uncertain element

scalar double

SampleMaxFrequency Maximum natural frequency for random sampling scalar double
AutoSimplify 'off' | {'basic'} |'full' char

The SampleStateDim property specifies the state dimension of random samples of the element when
using usample. The default value is 1. The AutoSimplify property serves the same function as in
the uncertain real parameter.

Time Domain of ultidyn Elements
On its own, every ultidyn element is interpreted as a continuous-time, system with uncertain
behavior, quantified by bounds (gain or real-part) on its frequency response. However, when a
ultidyn element is an uncertain element of an uncertain state space model (uss), then the time-
domain characteristic of the element is determined from the time-domain characteristic of the
system. The bounds (gain-bounded or positivity) apply to the frequency-response of the element.

Interpreting Uncertainty in Discrete Time
The interpretation of a ultidyn element as a continuous-time or discrete-time system depends on
the nature of the uncertain system (uss) within which it is an uncertain element.

For example, create a scalar ultidyn object. Then, create two 1-input, 1-output uss objects using the
ultidyn object as their “D” matrix. In one case, create without specifying sample-time, which
indicates continuous time. In the second case, force discrete-time, with a sample time of 0.42.

delta = ultidyn('delta',[1 1]); 
sys1 = uss([],[],[],delta) 
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USS: 0 States, 1 Output, 1 Input, Continuous System 
  delta: 1x1 LTI, max. gain = 1, 1 occurrence 
sys2 = uss([],[],[],delta,0.42) 
USS: 0 States, 1 Output, 1 Input, Discrete System, Ts = 0.42 
  delta: 1x1 LTI, max. gain = 1, 1 occurrence 

Next, get a random sample of each system. When obtaining random samples using usample, the
values of the elements used in the sample are returned in the 2nd argument from usample as a
structure.

[sys1s,d1v] = usample(sys1); 
[sys2s,d2v] = usample(sys2); 

Look at d1v.delta.Ts and d2v.delta.Ts. In the first case, since sys1 is continuous-time, the
system d1v.delta is continuous-time. In the second case, since sys2 is discrete-time, with sample
time 0.42, the system d2v.delta is discrete-time, with sample time 0.42.

d1v.delta.Ts 
ans = 
     0 
d2v.delta.Ts 
ans = 
    0.4200 

Finally, in the case of a discrete-time uss object, it is not the case that ultidyn objects are
interpreted as continuous-time uncertainty in feedback with sampled-data systems. This very
interesting hybrid theory is beyond the scope of the toolbox.

See Also
ultidyn

Related Examples
• “Uncertain Real Parameters” on page 1-4
• “Uncertain Matrices” on page 1-20
• “Uncertain State-Space Models” on page 1-27
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Uncertain Gain and Phase
Use the umargin control design block to model gain and phase variations in feedback loops.
Modeling gain and phase variations in your uncertain system model lets you verify stability margins
during robustness analysis or enforce them during robust controller design.

To add gain and phase uncertainty to a feedback loop, you incorporate umargin blocks into an
uncertain state-space (uss) model of the closed-loop system. umargin is a SISO control design block,
representing gain and phase variation at a single location in a single feedback loop. To model gain
and phase uncertainty in MIMO feedback systems, insert a separate umargin object at each location
in the system at which you want to introduce gain and phase uncertainty.

Disk Model of Gain and Phase Uncertainty
umargin models gain and phase variations in an individual feedback channel as a frequency-
dependent multiplicative factor F(s) multiplying the nominal open-loop response L(s), such that the
perturbed response is L(s)F(s). The factor F(s) is parameterized by:

F s = 1 + α 1− σ /2 δ s
1− α 1 + σ /2 δ s .

In this model,

• δ(s) is a gain-bounded dynamic uncertainty, normalized so that it always varies within the unit disk
(||δ||∞ < 1).

• ɑ sets the amount of gain and phase variation modeled by F. For fixed σ, the parameter ɑ controls
the size of the disk. For ɑ = 0, the multiplicative factor is 1, corresponding to the nominal L.

• σ, called the skew, biases the modeled uncertainty toward gain increase or gain decrease.

The factor F takes values in a disk centered on the real axis and containing the nominal value F = 1.
The disk is characterized by its intercept DGM = [gmin,gmax] with the real axis. gmin < 1 and
gmin > 1 are the minimum and maximum relative changes in gain modeled by F, at nominal phase.
The phase uncertainty modeled by F is the range DPM = [pmin,pmax] of phase values at the
nominal gain (|F| = 1). For instance, in the following plot, the right side shows the disk F that
intersects the real axis in the interval [0.71,1.4]. The left side shows that this disk models a gain
variation of ±3 dB and a phase variation of ±19°.

F = umargin('F',1.4125)
plot(F)
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When you create a umargin block, you specify the amount of uncertainty by specifying DGM. Use
getDGM to translate specific amounts of gain and phase variations in to a suitable DGM range that
captures these variations. For more information about the uncertainty model used by umargin, see
“Stability Analysis Using Disk Margins” on page 2-2.

You can visualize the ranges of gain and phase uncertainty represented by a umargin object using
plot (umargin).

For examples of creating umargin objects and incorporating them into uncertain models, see:

• umargin
• “Model Gain and Phase Uncertainty in Feedback Loops” on page 1-42

Using Gain and Phase Uncertainty
When you have a uss model containing umargin control design blocks, you can perform robustness
and worst-case analysis to examine how gain and phase variation affects the response of the system.
For instance, use robstab and robgain to analyze the robust stability and robust performance of a
system with gain and phase uncertainty. Use wcgain and wcsigmaplot to examine the worst-case
responses of the system. For some examples, see:

• umargin
• “MIMO Stability Margins for Spinning Satellite” on page 2-20

Requiring robust stability for a closed-loop system with umargin gain and phase uncertainty is
equivalent to enforcing a disk-based gain margin [gmin,gmax] and corresponding phase margin.
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Therefore, you can use umargin blocks to enforce suitable disk margins when designing robust
controllers with musyn. For examples, see:

• umargin
• “Robust Controller for Spinning Satellite” on page 3-102

The requirement that a closed-loop system is robust against a particular amount of gain and phase
uncertainty is equivalent to saying that the system has that amount of gain and phase margin. You
can therefore use a umargin block to check the disk-based stability margins of a system that also
requires robustness against other types of uncertainty. For an example, see:

• “Check Robustness to Gain and Phase Variations” on the umargin reference page

See Also
getDGM | plot (umargin) | umargin

More About
• “Stability Analysis Using Disk Margins” on page 2-2
• “Model Gain and Phase Uncertainty in Feedback Loops” on page 1-42
• “MIMO Stability Margins for Spinning Satellite” on page 2-20
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Uncertain Complex Parameters and Matrices

Uncertain Complex Parameters
The ucomplex element is the Control Design Block that represents an uncertain complex number.
The value of an uncertain complex number lies in a disc, centered at NominalValue, with radius
specified by the Radius property of the ucomplex element. The size of the disc can also be specified
by Percentage, which means the radius is derived from the absolute value of the NominalValue.
The properties of ucomplex objects are

Properties Meaning Class
Name Internal Name char
NominalValue Nominal value of element double
Mode 'Range' | 'Percentage' char
Radius Radius of disk double
Percentage Additive variation (percent of Radius) double
AutoSimplify 'off' | {'basic'} | 'full' char

The simplest construction requires only a name and nominal value. Displaying the properties shows
that the default Mode is Radius, and the default radius is 1.

a = ucomplex('a',2-j)

a = 
  Uncertain complex parameter "a" with nominal value 2-1i and radius 1.

get(a)

    NominalValue: 2.0000 - 1.0000i
            Mode: 'Radius'
          Radius: 1
      Percentage: 44.7214
    AutoSimplify: 'basic'
            Name: 'a'

Sample the uncertain complex parameter at 400 values, and plot in the complex plane. Clearly, the
samples appear to be from a disc of radius 1, centered in the complex plane at the value 2-j.

asample = usample(a,400); 
plot(asample(:),'o'); 
xlim([-0.5 4.5]); 
ylim([-3 1]);
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Uncertain Complex Matrices
The uncertain complex matrix class, ucomplexm, represents the set of matrices given by the formula

N + WLΔWR

where N, WL, and WR are known matrices, and Δ is any complex matrix with σ̇ Δ ≤ 1. All properties
of a ucomplexm are can be accessed with get and set. The properties are

Properties Meaning Class
Name Internal Name char
NominalValue Nominal value of element double
WL Left weight double
WR Right weight double
AutoSimplify 'off' | {'basic'} | 'full' char

Uncertain Complex Matrix and Weighting Matrices

Create a 4-by-3 uncertain complex matrix (ucomplexm), and view its properties. The simplest
construction requires only a name and nominal value.

m = ucomplexm('m',[1 2 3; 4 5 6; 7 8 9; 10 11 12])
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m = 
  Uncertain complex matrix "m" with 4 rows and 3 columns.

get(m)

    NominalValue: [4x3 double]
              WL: [4x4 double]
              WR: [3x3 double]
    AutoSimplify: 'basic'
            Name: 'm'

The nominal value is the matrix you supply to ucomplexm.

mnom = m.NominalValue

mnom = 4×3

     1     2     3
     4     5     6
     7     8     9
    10    11    12

By default, the weighting matrices are the identity. For example, examine the left weighting.

m.WL

ans = 4×4

     1     0     0     0
     0     1     0     0
     0     0     1     0
     0     0     0     1

Sample the uncertain matrix, and compare to the nominal value. Note the element-by-element sizes of
the difference are roughly equal, indicative of the identity weighting matrices.

msamp = usample(m);
diff = abs(msamp-mnom)

diff = 4×3

    0.3309    0.0917    0.2881
    0.2421    0.3449    0.3917
    0.2855    0.2186    0.2915
    0.3260    0.2753    0.3816

Change the left and right weighting matrices, making the uncertainty larger as you move down the
rows, and across the columns.

m.WL = diag([0.2 0.4 0.8 1.6]); 
m.WR = diag([0.1 1 4]);

Sample the uncertain matrix again, and compare to the nominal value. Note the element-by-element
sizes of the difference, and the general trend that the smallest differences are near the (1,1) element,
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and the largest differences are near the (4,3) element, consistent with the trend in the diagonal
weighting matrices.

msamp = usample(m);
diff = abs(msamp-mnom)

diff = 4×3

    0.0048    0.0526    0.2735
    0.0154    0.1012    0.4898
    0.0288    0.3334    0.8555
    0.0201    0.4632    1.3783

See Also
ucomplex | ucomplexm
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Systems with Unmodeled Dynamics
The unstructured uncertain dynamic system Control Design Block, the udyn object, represents
completely unknown multivariable, time-varying nonlinear systems.

For practical purposes, these uncertain elements represent noncommuting symbolic variables
(placeholders). All algebraic operations, such as addition, subtraction, multiplication (i.e., cascade)
operate properly, and substitution (with usubs) is allowed. However, all of the analysis tools (e.g.,
robstab) do not handle these types of uncertain elements.

You can create a 2-by-3 udyn element. Check its size, and properties.

m = udyn('m',[2 3]) 

m =

  Uncertain dynamics "m" with 2 outputs and 3 inputs.

get(m) 

     NominalValue: [2×3 ss]
    AutoSimplify: 'basic'
            Name: 'm'
              Ts: 0
        TimeUnit: 'seconds'
       InputName: {3×1 cell}
       InputUnit: {3×1 cell}
      InputGroup: [1×1 struct]
      OutputName: {2×1 cell}
      OutputUnit: {2×1 cell}
     OutputGroup: [1×1 struct]
           Notes: [0×1 string]
        UserData: []

See Also
udyn

Related Examples
• “Uncertain LTI Dynamics Elements” on page 1-9
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Uncertain Matrices
Uncertain matrices (class umat) are built from doubles and uncertain elements, using traditional
MATLAB matrix building syntax. Uncertain matrices can be added, subtracted, multiplied, inverted,
transposed, etc., resulting in uncertain matrices. The rows and columns of an uncertain matrix are
referenced in the same manner that MATLAB references rows and columns of an array, using
parenthesis, and integer indices. The NominalValue of a uncertain matrix is the result obtained
when all uncertain elements are replaced with their own NominalValue. The uncertain elements
making up a umat are accessible through the Uncertainty gateway, and the properties of each
element within a umat can be changed directly. The properties are:

Properties Meaning Class
NominalValue Nominal value of element double
Uncertainty Uncertain blocks in the matrix, stored as a

structure whose fields are named after the
uncertain blocks, and contain the uncertain
elements, such as ureal.

struct

SamplingGrid Sampling grid, for umat arrays, stored as a
structure whose fields are named after the
sampling variables, and contain the sample
values associated with the corresponding
model in the array.

struct

Name umat name. When you convert a static control
design block such as ureal to an uncertain
matrix using umat(blk), the Name property
of the block is preserved.

char

Using usubs, specific values may be substituted for any of the uncertain elements within a umat. The
command usample generates a random sample of the uncertain matrix, substituting random samples
(within their ranges) for each of the uncertain elements.

The command wcnorm computes tight bounds on the worst-case (maximum over the uncertain
elements' ranges) norm of the uncertain matrix.

Standard MATLAB numerical matrices (i.e., double) naturally can be viewed as uncertain matrices
without any uncertainty.

Create and Manipulate Uncertain Matrices
You create uncertain matrices (umat objects) by creating uncertain parameters and using them to
build matrices. You can then use uncertain matrices to build uncertain state-space models. This
example shows how to create an uncertain matrix, access and change its uncertain parameters,
extract elements, and perform matrix arithmetic.

For example, create two uncertain real parameters, and use them to create a 3-by-2 uncertain matrix.

a = ureal('a',3); 
b = ureal('b',10,'Percentage',20); 
M = [-a, 1/b; b, a+1/b; 1, 3]

M =
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  Uncertain matrix with 3 rows and 2 columns.
  The uncertainty consists of the following blocks:
    a: Uncertain real, nominal = 3, variability = [-1,1], 2 occurrences
    b: Uncertain real, nominal = 10, variability = [-20,20]%, 3 occurrences

Type "M.NominalValue" to see the nominal value, "get(M)" to see all properties, and "M.Uncertainty" to interact with the uncertain elements.

Examine and Modify umat Properties

M is a umat object. Examine its properties using get.

get(M)

    NominalValue: [3x2 double]
     Uncertainty: [1x1 struct]
    SamplingGrid: [1x1 struct]
            Name: ''

The nominal value of M is the matrix obtained by replacing all the uncertain elements with their
nominal values.

M.NominalValue

ans = 3×2

   -3.0000    0.1000
   10.0000    3.1000
    1.0000    3.0000

The Uncertainty property is a structure containing the uncertain elements (the “Control Design
Blocks”) of M.

M.Uncertainty

ans = struct with fields:
    a: [1x1 ureal]
    b: [1x1 ureal]

M.Uncertainty.a

ans = 
  Uncertain real parameter "a" with nominal value 3 and variability [-1,1].

Use the Uncertainty property for direct access to the uncertain elements. For example, check the
Range of the uncertain element a within M.

M.Uncertainty.a.Range

ans = 1×2

     2     4

The range is [2,4] because you created the ureal parameter a with a nominal value 3 and the
default uncertainty of +/- 1. Change the range to [2.5,5].

M.Uncertainty.a.Range = [2.5,5]
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M =

  Uncertain matrix with 3 rows and 2 columns.
  The uncertainty consists of the following blocks:
    a: Uncertain real, nominal = 3, variability = [-0.5,2], 2 occurrences
    b: Uncertain real, nominal = 10, variability = [-20,20]%, 3 occurrences

Type "M.NominalValue" to see the nominal value, "get(M)" to see all properties, and "M.Uncertainty" to interact with the uncertain elements.

This change to a only takes place within M. Verify that the variable a in the MATLAB workspace still
has the original range.

a.Range

ans = 1×2

     2     4

You cannot combine elements that have a common internal name, but different properties. So, for
example, entering M.Uncertainty.a - a would generate an error, because the realp parameter a
in the workspace has different properties from the element a in M.

Row and Column Referencing

You can use standard row-column referencing to extract elements from a umat. For example, extract
a 2-by-2 selection from M consisting of its second and third rows.

Msub = M(2:3,:)

Msub =

  Uncertain matrix with 2 rows and 2 columns.
  The uncertainty consists of the following blocks:
    a: Uncertain real, nominal = 3, variability = [-0.5,2], 1 occurrences
    b: Uncertain real, nominal = 10, variability = [-20,20]%, 2 occurrences

Type "Msub.NominalValue" to see the nominal value, "get(Msub)" to see all properties, and "Msub.Uncertainty" to interact with the uncertain elements.

You can use single indexing only if the umat is a single column or row. Make a single-column selection
from M and use single-index references to access elements of it.

Msing = M([2 1 2 3],2);
Msing(2)

ans =

  Uncertain matrix with 1 rows and 1 columns.
  The uncertainty consists of the following blocks:
    b: Uncertain real, nominal = 10, variability = [-20,20]%, 1 occurrences

Type "ans.NominalValue" to see the nominal value, "get(ans)" to see all properties, and "ans.Uncertainty" to interact with the uncertain elements.

You can use indexing to change the value of any element of a umat. For example, set the (3,2) entry of
M to an uncertain parameter c.

c = ureal('c',3,'Percentage',40);
M(3,2) = c
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M =

  Uncertain matrix with 3 rows and 2 columns.
  The uncertainty consists of the following blocks:
    a: Uncertain real, nominal = 3, variability = [-0.5,2], 2 occurrences
    b: Uncertain real, nominal = 10, variability = [-20,20]%, 2 occurrences
    c: Uncertain real, nominal = 3, variability = [-40,40]%, 1 occurrences

Type "M.NominalValue" to see the nominal value, "get(M)" to see all properties, and "M.Uncertainty" to interact with the uncertain elements.

M now has three uncertain blocks.

Matrix Operations on umat Objects

You can perform many matrix operations on a umat object, such as matrix-multiply, transpose, and
inverse. You can also combine uncertain matrices with numeric matrices that do not have uncertainty.

For example, premultiply M by a 1-by-3 numeric matrix, resulting in a 1-by-2 umat.

M1 = [2 3 1]*M;

Verify that the first entry of M1 is as expected, -2*a + 3*b + 1.

d = M1(1) - (-2*M.Uncertainty.a + 3*M.Uncertainty.b + 1)

d =

  Uncertain matrix with 1 rows, 1 columns, and no uncertain blocks.

Type "d.NominalValue" to see the nominal value, "get(d)" to see all properties, and "d.Uncertainty" to interact with the uncertain elements.

Transpose M, form a product, and invert it. As expected, the product of a matrix and its inverse is the
identity matrix. You can verify this by sampling the result.

H = M.'*M; 
K = inv(H); 
usample(K*H,3)

ans = 
ans(:,:,1) =

    1.0000    0.0000
   -0.0000    1.0000

ans(:,:,2) =

    1.0000    0.0000
   -0.0000    1.0000

ans(:,:,3) =

    1.0000    0.0000
   -0.0000    1.0000
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Lifting a Double Matrix to umat

You can convert a numeric matrix to a umat object with no uncertain elements. Use the umat
command to lift a double matrix to the umat class. For example:

Md = [1 2 3;4 5 6]; 
M = umat(Md)

M =

  Uncertain matrix with 2 rows, 3 columns, and no uncertain blocks.

Type "M.NominalValue" to see the nominal value, "get(M)" to see all properties, and "M.Uncertainty" to interact with the uncertain elements.

You can also convert higher-dimension numeric matrices to umat. When you do so, the software
interprets the third dimension and beyond as array dimensions. For example, convert a random three-
dimensional numeric array to umat.

Md = randn(4,5,6); 
M = umat(Md)

M =

  6x1 array of uncertain matrices with 4 rows, 5 columns, and no uncertain blocks.

Type "M.NominalValue" to see the nominal value, "get(M)" to see all properties, and "M.Uncertainty" to interact with the uncertain elements.

The result is a one-dimensional array of uncertain matrices, rather than a three-dimensional
uncertain array. Similarly, a four-dimensional numeric array converts to a two-dimensional array of
umat objects.

Md = randn(4,5,6,7); 
M = umat(Md)

M =

  6x7 array of uncertain matrices with 4 rows, 5 columns, and no uncertain blocks.

Type "M.NominalValue" to see the nominal value, "get(M)" to see all properties, and "M.Uncertainty" to interact with the uncertain elements.

See “Array Management for Uncertain Objects” on page 1-69 for more information about
multidimensional arrays of uncertain objects.

See Also
umat | ureal

Related Examples
• “Uncertain State-Space Models” on page 1-27
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Evaluate Uncertain Elements by Substitution
You can make substitutions for uncertain elements in uncertain matrices and models using usubs.
Doing so is useful for evaluating uncertain objects at particular values of the uncertain parameters,
or for sampling uncertain objects at multiple parameter values.

For example, create an uncertain matrix with three uncertain parameters.

a = ureal('a',3);
b = ureal('b',10,'Percentage',20);
c = ureal('c',3,'Percentage',40);
M = [-a, 1/b; b, a+1/b; 1, c]

M =

  Uncertain matrix with 3 rows and 2 columns.
  The uncertainty consists of the following blocks:
    a: Uncertain real, nominal = 3, variability = [-1,1], 2 occurrences
    b: Uncertain real, nominal = 10, variability = [-20,20]%, 3 occurrences
    c: Uncertain real, nominal = 3, variability = [-40,40]%, 1 occurrences

Type "M.NominalValue" to see the nominal value, "get(M)" to see all properties, and "M.Uncertainty" to interact with the uncertain elements.

Substitute all instances of the uncertain real parameter a with the value 4. This operation results in a
umat containing only two uncertain real parameters, b and c.

M2 = usubs(M,'a',4)

M2 =

  Uncertain matrix with 3 rows and 2 columns.
  The uncertainty consists of the following blocks:
    b: Uncertain real, nominal = 10, variability = [-20,20]%, 3 occurrences
    c: Uncertain real, nominal = 3, variability = [-40,40]%, 1 occurrences

Type "M2.NominalValue" to see the nominal value, "get(M2)" to see all properties, and "M2.Uncertainty" to interact with the uncertain elements.

You can replace all instances of one uncertain real parameter with another. For example, replace all
instances of b in M with the uncertain parameter a. The resulting umat contains only the parameters
a and c, and has two additional occurrences of a, compared to M.

M3 = usubs(M,'b',M.Uncertainty.a)

M3 =

  Uncertain matrix with 3 rows and 2 columns.
  The uncertainty consists of the following blocks:
    a: Uncertain real, nominal = 3, variability = [-1,1], 5 occurrences
    c: Uncertain real, nominal = 3, variability = [-40,40]%, 1 occurrences

Type "M3.NominalValue" to see the nominal value, "get(M3)" to see all properties, and "M3.Uncertainty" to interact with the uncertain elements.

Next, evaluate M at the nominal value of a and a random value of b.

M4 = usubs(M,'a','NominalValue','b','Random')

M4 =
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  Uncertain matrix with 3 rows and 2 columns.
  The uncertainty consists of the following blocks:
    c: Uncertain real, nominal = 3, variability = [-40,40]%, 1 occurrences

Type "M4.NominalValue" to see the nominal value, "get(M4)" to see all properties, and "M4.Uncertainty" to interact with the uncertain elements.

Use the usample command to generate multiple random instances of umat, uss, or ufrd uncertain
objects. See “Generate Samples of Uncertain Systems” on page 1-61 for more information.

See Also
ufrd | umat | usample | uss | usubs

Related Examples
• “Substitution by usubs” on page 1-66
• “Generate Samples of Uncertain Systems” on page 1-61
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Uncertain State-Space Models
Uncertain state-space (uss) models are linear systems with uncertain state-space matrices and/or
uncertain linear dynamics. Like their numeric (i.e., not uncertain) counterpart, the ss model object,
you can build them from state-space matrices using the ss command. When one or more of the state-
space matrices contain uncertain elements (uncertain Control Design Blocks), the result is a uss
model object.

Combining uncertain systems with other uncertain systems (for example, using model arithmetic,
connect, or feedback) usually results in an uncertain system. You can also combine numeric
systems with uncertain systems. Usually the result is an uncertain system. The nominal value of an
uncertain system is a ss model object.

In the example below, the A, B and C matrices are made up of uncertain real parameters. Packing
them together with the ss command results in a continuous-time uncertain system.

Uncertain State-Space Model
To create an uncertain state-space model, you first use Control Design Blocks to create uncertain
elements. Then, use the elements to specify the state-space matrices of the system.

For instance, create three uncertain real parameters and build state-spaces matrices from them.

p1 = ureal('p1',10,'Percentage',50); 
p2 = ureal('p2',3,'PlusMinus',[-.5 1.2]); 
p3 = ureal('p3',0); 

A = [-p1 p2; 0 -p1]; 
B = [-p2; p2+p3]; 
C = [1 0; 1 1-p3]; 
D = [0; 0];

The matrices constructed with uncertain parameters, A, B, and C, are uncertain matrix (umat)
objects. Using them as inputs to ss results in a 2-output, 1-input, 2-state uncertain system.

sys = ss(A,B,C,D)

sys =

  Uncertain continuous-time state-space model with 2 outputs, 1 inputs, 2 states.
  The model uncertainty consists of the following blocks:
    p1: Uncertain real, nominal = 10, variability = [-50,50]%, 2 occurrences
    p2: Uncertain real, nominal = 3, variability = [-0.5,1.2], 2 occurrences
    p3: Uncertain real, nominal = 0, variability = [-1,1], 2 occurrences

Type "sys.NominalValue" to see the nominal value, "get(sys)" to see all properties, and "sys.Uncertainty" to interact with the uncertain elements.

The display shows that the system includes the three uncertain parameters.

Properties of uss Objects
uss models, like all model objects, include properties that store dynamics and model metadata. View
the properties of an uncertain state-space model.
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p1 = ureal('p1',10,'Percentage',50);
p2 = ureal('p2',3,'PlusMinus',[-.5 1.2]);
p3 = ureal('p3',0);
A = [-p1 p2; 0 -p1];
B = [-p2; p2+p3];
C = [1 0; 1 1-p3];
D = [0; 0];
sys = ss(A,B,C,D);     % create uss model

get(sys)

     NominalValue: [2x1 ss]
      Uncertainty: [1x1 struct]
                A: [2x2 umat]
                B: [2x1 umat]
                C: [2x2 umat]
                D: [2x1 double]
                E: []
        StateName: {2x1 cell}
        StateUnit: {2x1 cell}
    InternalDelay: [0x1 double]
       InputDelay: 0
      OutputDelay: [2x1 double]
               Ts: 0
         TimeUnit: 'seconds'
        InputName: {''}
        InputUnit: {''}
       InputGroup: [1x1 struct]
       OutputName: {2x1 cell}
       OutputUnit: {2x1 cell}
      OutputGroup: [1x1 struct]
            Notes: [0x1 string]
         UserData: []
             Name: ''
     SamplingGrid: [1x1 struct]

Most of the properties behave similarly to how they behave for ss model objects. The NominalValue
property is itself an ss model object. You can therefore analyze the nominal value as you would any
state-space model. For instance, compute the poles and step response of the nominal system.

pole(sys.NominalValue)

ans = 2×1

   -10
   -10

step(sys.NominalValue)
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As with the uncertain matrices (umat), the Uncertainty property is a structure containing the
uncertain elements. You can use this property for direct access to the uncertain elements. For
instance, check the Range of the uncertain element named p2 within sys.

sys.Uncertainty.p2.Range

ans = 1×2

    2.5000    4.2000

Change the uncertainty range of p2 within sys.

sys.Uncertainty.p2.Range = [2 4];

This command changes only the range of the parameter called p2 in sys. It does not change the
variable p2 in the MATLAB workspace.

p2.Range

ans = 1×2

    2.5000    4.2000
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Lifting a ss to a uss
A not-uncertain state space object may be interpreted as an uncertain state space object that has no
dependence on uncertain elements. Use the uss command to “lift” a ss to the uss class.

sys = rss(3,2,1); 
usys = uss(sys) 
USS: 3 States, 2 Outputs, 1 Input, Continuous System 

Arrays of ss objects can also be lifted. See “Array Management for Uncertain Objects” on page 1-69
for more information about how arrays of uncertain objects are handled.

See Also
ss | umat | uss

Related Examples
• “Create and Manipulate Uncertain Matrices” on page 1-20
• “Uncertain Model Interconnections” on page 1-52
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Modeling a Family of Responses as an Uncertain System
This example shows how to use the Robust Control Toolbox™ command ucover to model a family of
LTI responses as an uncertain system. This command is useful to fit an uncertain model to a set of
frequency responses representative of the system variability, or to reduce the complexity of an
existing uncertain model to facilitate the synthesis of robust controllers with musyn.

Modeling Plant Variability as Uncertainty

In this first example, we have a family of models describing the plant behavior under various
operating conditions. The nominal plant model is a first-order unstable system.

Pnom = tf(2,[1 -2])

Pnom =
 
    2
  -----
  s - 2
 
Continuous-time transfer function.

The other models are variations of Pnom. They all have a single unstable pole but the location of this
pole may vary with the operating condition.

p1 = Pnom*tf(1,[.06 1]);              % extra lag
p2 = Pnom*tf([-.02 1],[.02 1]);       % time delay
p3 = Pnom*tf(50^2,[1 2*.1*50 50^2]);  % high frequency resonance
p4 = Pnom*tf(70^2,[1 2*.2*70 70^2]);  % high frequency resonance
p5 = tf(2.4,[1 -2.2]);                % pole/gain migration
p6 = tf(1.6,[1 -1.8]);                % pole/gain migration

To apply robust control tools, we can replace this set of models with a single uncertain plant model
whose range of behaviors includes p1 through p6. This is one use of the command ucover. This
command takes an array of LTI models Parray and a nominal model Pnom and models the difference
Parray-Pnom as multiplicative uncertainty in the system dynamics.

Because ucover expects an array of models, use the stack command to gather the plant models p1
through p6 into one array.

Parray = stack(1,p1,p2,p3,p4,p5,p6);

Next, use ucover to "cover" the range of behaviors Parray with an uncertain model of the form

P = Pnom * (1 + Wt * Delta)

where all uncertainty is concentrated in the "unmodeled dynamics" Delta (a ultidyn object).
Because the gain of Delta is uniformly bounded by 1 at all frequencies, a "shaping" filter Wt is used
to capture how the relative amount of uncertainty varies with frequency. This filter is also referred to
as the uncertainty weighting function.

Try a 4th-order filter Wt for this example:
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orderWt = 4;
Parrayg = frd(Parray,logspace(-1,3,60));
[P,Info] = ucover(Parrayg,Pnom,orderWt,'InputMult');

The resulting model P is a single-input, single-output uncertain state-space (USS) object with nominal
value Pnom.

P

P =

  Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 5 states.
  The model uncertainty consists of the following blocks:
    Parrayg_InputMultDelta: Uncertain 1x1 LTI, peak gain = 1, 1 occurrences

Type "P.NominalValue" to see the nominal value, "get(P)" to see all properties, and "P.Uncertainty" to interact with the uncertain elements.

tf(P.NominalValue)

ans =
 
    2
  -----
  s - 2
 
Continuous-time transfer function.

A Bode magnitude plot confirms that the shaping filter Wt "covers" the relative variation in plant
behavior. As a function of frequency, the uncertainty level is 30% at 5 rad/sec (-10dB = 0.3) , 50% at
10 rad/sec, and 100% beyond 29 rad/sec.

Wt = Info.W1;
bodemag((Pnom-Parray)/Pnom,'b--',Wt,'r'); grid
title('Relative Gaps vs. Magnitude of Wt')
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You can now use the uncertain model P to design a robust controller for the original family of plant
models, see “Simultaneous Stabilization Using Robust Control” on page 3-54 for details.

Simplifying an Existing Uncertain Model

In this second example, we start with a detailed uncertain model of the plant. This model consists of
first-order dynamics with uncertain gain and time constant, in series with a mildly underdamped
resonance and significant unmodeled dynamics. This model is created using the ureal and ultidyn
commands for specifying uncertain variables:

gamma = ureal('gamma',2,'Perc',30);  % uncertain gain
tau = ureal('tau',1,'Perc',30);      % uncertain time-constant
wn = 50; xi = 0.25;
P = tf(gamma,[tau 1]) * tf(wn^2,[1 2*xi*wn wn^2]);

% Add unmodeled dynamics and set SampleStateDim to 5 to get representative
% sample values of the uncertain model P
delta = ultidyn('delta',[1 1],'SampleStateDim',5,'Bound',1);
W = makeweight(0.1,20,10);
P = P * (1+W*delta)

P =

  Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 4 states.
  The model uncertainty consists of the following blocks:
    delta: Uncertain 1x1 LTI, peak gain = 1, 1 occurrences
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    gamma: Uncertain real, nominal = 2, variability = [-30,30]%, 1 occurrences
    tau: Uncertain real, nominal = 1, variability = [-30,30]%, 1 occurrences

Type "P.NominalValue" to see the nominal value, "get(P)" to see all properties, and "P.Uncertainty" to interact with the uncertain elements.

A collection of step responses illustrates the plant variability.

step(P,4)
title('Sampled Step Responses of Uncertain System')

The uncertain plant model P contains 3 uncertain elements. For control design purposes, it is often
desirable to simplify this uncertainty model while approximately retaining its overall variability. This
is another use of the command ucover.

To use ucover in this context, first map the uncertain model P into an array of LTI models using
usample. This command samples the uncertain elements in an uncertain system and returns the
corresponding LTI models, each model representing one possible behavior of the uncertain system. In
this example, sample P at 60 points (the random number generator is seeded for repeatability):

rng(0,'twister');
Parray = usample(P,60);

Next, use ucover to cover all behaviors in Parray by a simple uncertainty model Usys. Choose the
nominal value of P as center of the cover, and use a 2nd-order filter to model the frequency
distribution of the unmodeled dynamics.
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orderWt = 2;
Parrayg = frd(Parray,logspace(-3,3,60));
[Usys,Info] = ucover(Parrayg,P.NominalValue,orderWt,'InputMult');

A Bode magnitude plot shows how the filter magnitude (in red) "covers" the relative variability of the
plant frequency response (in blue).

Wt = Info.W1;
bodemag((P.NominalValue-Parray)/P.NominalValue,'b--',Wt,'r')
title('Relative Gaps (blue) vs. Shaping Filter Magnitude (red)')

You can now use the simplified uncertainty model Usys to design a robust controller for the original
plant, see “First-Cut Robust Design” on page 3-20 for details.

Adjusting the Uncertainty Weighting

In this third example, we start with 40 frequency responses of a 2-input, 2-output system. This data
has been collected with a frequency analyzer under various operating conditions. A two-state nominal
model is fitted to the most typical response:

A = [-5 10;-10 -5];
B = [1 0;0 1];
C = [1 10;-10 1];
D = 0;
Pnom = ss(A,B,C,D);

The frequency response data is loaded into a 40-by-1 array of FRD models:
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load ucover_demo
size(Pdata)

40x1 array of FRD models.
Each model has 2 outputs, 2 inputs, and 120 frequency points.

Plot this data and superimpose the nominal model.

bode(Pdata,'b--',Pnom,'r',{.1,1e3}), grid
legend('Frequency response data','Nominal model','Location','NorthEast')

Because the response variability is modest, try modeling this family of frequency responses using an
additive uncertainty model of the form

P = Pnom + w * Delta

where Delta is a 2-by-2 ultidyn object representing the unmodeled dynamics and w is a scalar
weighting function reflecting the frequency distribution of the uncertainty (variability in Pdata).

Start with a first-order filter w and compare the magnitude of w with the minimum amount of
uncertainty needed at each frequency:

[P1,InfoS1] = ucover(Pdata,Pnom,1,'Additive');
w = InfoS1.W1;
bodemag(w,'r',InfoS1.W1opt,'g',{1e-1 1e3})
title('Scalar Additive Uncertainty Model')
legend('First-order w','Min. uncertainty amount','Location','SouthWest')
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The magnitude of w should closely match the minimum uncertainty amount. It is clear that the first-
order fit is too conservative and exceeds this minimum amount at most frequencies. Try again with a
third-order filter w. For speed, reuse the data in InfoS1 to avoid recomputing the optimal uncertainty
scaling at each frequency.

[P3,InfoS3] = ucover(Pnom,InfoS1,3,'Additive');
w = InfoS3.W1;
bodemag(w,'r',InfoS3.W1opt,'g',{1e-1 1e3})
title('Scalar Additive Uncertainty Model')
legend('Third-order w','Min. uncertainty amount','Location','SouthWest')
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The magnitude of w now closely matches the minimum uncertainty amount. Among additive
uncertainty models, P3 provides a tight cover of the behaviors in Pdata. Note that P3 has a total of 8
states (2 from the nominal part and 6 from w).

P3

P3 =

  Uncertain continuous-time state-space model with 2 outputs, 2 inputs, 8 states.
  The model uncertainty consists of the following blocks:
    Pdata_AddDelta: Uncertain 2x2 LTI, peak gain = 1, 1 occurrences

Type "P3.NominalValue" to see the nominal value, "get(P3)" to see all properties, and "P3.Uncertainty" to interact with the uncertain elements.

You can refine this additive uncertainty model by using non-scalar uncertainty weighting functions,
for example

P = Pnom + W1*Delta*W2

where W1 and W2 are 2-by-2 diagonal filters. In this example, restrict use W2=1 and allow both
diagonal entries of W1 to be third order.

[PM,InfoM] = ucover(Pdata,Pnom,[3;3],[],'Additive');

Compare the two entries of W1 with the minimum uncertainty amount computed earlier. Note that at
all frequencies, one of the diagonal entries of W1 has magnitude much smaller than the scalar filter w.
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This suggests that the diagonally-weighted uncertainty model yields a less conservative cover of the
frequency response family.

bodemag(InfoS1.W1opt,'g*',...
    InfoM.W1opt(1,1),'r--',InfoM.W1(1,1),'r',...
    InfoM.W1opt(2,2),'b--',InfoM.W1(2,2),'b',{1e-1 1e3});
title('Diagonal Additive Uncertainty Model')
legend('Scalar Optimal Weight',...
    'W1(1,1), pointwise optimal',...
    'W1(1,1), 3rd-order fit',...
    'W1(2,2), pointwise optimal',...
    'W1(2,2), 3rd-order fit',...
    'Location','SouthWest')

The degree of conservativeness of one cover over another can be partially quantified by considering
the two frequency-dependent quantities:

Fd2s = norm(inv(W1)*w) ,   Fs2d = norm(W1/w)

These quantities measure by how much one uncertainty model needs to be scaled to cover the other.
For example, the uncertainty model Pnom + W1*Delta needs to be enlarged by a factor Fd2s to
include all of the models represented by the uncertain model Pnom + w*Delta.

Plot Fd2s and Fs2d as a function of frequency.

Fd2s = fnorm(InfoS1.W1opt*inv(InfoM.W1opt));
Fs2d = fnorm(InfoM.W1opt*inv(InfoS1.W1opt));
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semilogx(fnorm(Fd2s),'b',fnorm(Fs2d),'r'), grid
axis([0.1 1000 0.5 2.6])
xlabel('Frequency (rad/s)'), ylabel('Magnitude')
title('Scale factors relating different covers')
legend('Diagonal to Scalar factor',...
    'Scalar to Diagonal factor','Location','SouthWest');

This plot shows that:

• Fs2d = 1 in a large frequency range so Pnom+w*Delta includes all the behaviors modeled by
Pnom+W1*Delta

• In that same frequency range, Pnom+W1*Delta does not include all of the behaviors modeled by
Pnom+w*Delta and, in fact, would need to be enlarged by a factor between 1.2 and 2.6 in order
to do so.

• In the frequency range [1 20], neither uncertainty model contains the other, but at all frequencies,
making Pnom+W1*Delta cover Pnom+w*Delta requires a much smaller scaling factor than the
converse.

This indicates that the Pnom+W1*Delta model provides a less conservative cover of the frequency
response data in Pdata.

See Also
ucover | uss
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More About
• “Building and Manipulating Uncertain Models”
• “Generate Samples of Uncertain Systems” on page 1-61
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Model Gain and Phase Uncertainty in Feedback Loops
This example shows how to model gain and phase uncertainty in feedback loops using the umargin
control design block. The example also shows how to check a feedback loop for robust stability
against such uncertainty.

Modeling Gain and Phase Uncertainty

Consider a SISO feedback loop with open-loop transfer function

L = 3 . 5
s3 + 2s2 + 3s

.

L = tf(3.5,[1 2 3 0]);
bode(L)
grid on

Due to plant uncertainty and other sources of variability, the loop gain and phase are subject to
fluctuations. In general, you can quantify the amount of uncertainty through experimenting on your
system, or approximate it based on insight or experience. For this example, suppose that the open-
loop gain can increase or decrease by 50%, and the phase by ±30°. You can use the umargin block to
model such uncertainty. umargin represents the variation as an uncertain multiplicative factor F with
nominal value 1. The set of values F can take captures the gain and phase uncertainty you specify.

To create the umargin block, use getDGM to compute the smallest uncertainty disk that captures the
gain and phase variation you want to represent. Use the output of getDGM to create F.
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DGM = getDGM(1.5,30,'tight');
F = umargin('F',DGM)

F = 
  Uncertain gain/phase "F" with relative gain change in [0.472,1.5] and phase change of ±30 degrees.

Visualize F to see the range of values taken by this factor (right) and the range of gain and phase
variations it models by F (left).

plot(F)

The plots show that the gain can vary between 47% and 150% of its nominal value (assuming no
phase variation) and the phase can vary by ±30° (assuming no gain variation). When both gain and
phase vary, their variation stays inside the shaded region in the left plot.

The uncertainty F multiplies the open-loop response, yielding a closed-loop system as in the following
diagram.

Incorporate this uncertainty into the closed-loop model.
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T = feedback(L*F,1)

T =

  Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 3 states.
  The model uncertainty consists of the following blocks:
    F: Uncertain gain/phase, gain × [0.472,1.5], phase ± 30 deg, 1 occurrences

Type "T.NominalValue" to see the nominal value, "get(T)" to see all properties, and "T.Uncertainty" to interact with the uncertain elements.

The result is an uncertain state-space (uss) model of the closed-loop system containing the uncertain
block F. In general the open-loop gain can contain other uncertain blocks too.

Robustness Analysis

Sampling the uncertainty and plotting the closed-loop step response suggest poor robustness to such
gain/phase variations.

clf 
rng default
step(T)

To quantify this poor robustness, use robstab to gauge the robust stability margin for the specified
uncertainty.

SM = robstab(T)

SM = struct with fields:
           LowerBound: 0.8303
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           UpperBound: 0.8319
    CriticalFrequency: 1.4482

The robust stability margin is only 0.83, meaning that the feedback loop can only withstand 83% of
the specified uncertainty. The factor 0.83 is in normalized units. To translate this value into an actual
safe range of gain and phase variations, use uscale. This command takes a modeled uncertainty disk
and a scaling factor, and converts it into a new uncertainty disk.

Fsafe = uscale(F,0.83)

Fsafe = 
  Uncertain gain/phase "F" with relative gain change in [0.564,1.42] and phase change of ±24.8 degrees.

The display shows that 83% of the uncertainty specified in F (and therefore in L) amounts to gain
variation between 56% and 142% of the nominal value, and phase variation of ±25°. Plot the disk
Fsafe to see the full range of simultaneous gain and phase variations that the closed-loop system can
tolerate.

plot(Fsafe)

In the model L, gain and phase uncertainty is the only source of uncertainty. Therefore, you can
obtain the same result by directly computing the disk-based margins with diskmargin. Make sure to
account for the "skew" of the uncertainty model F, which biases the uncertainty toward gain increase
or decrease.
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sigma = F.Skew;
DM = diskmargin(L,sigma)

DM = struct with fields:
           GainMargin: [0.5626 1.4178]
          PhaseMargin: [-24.8091 24.8091]
           DiskMargin: 0.4274
           LowerBound: 0.4274
           UpperBound: 0.4274
            Frequency: 1.4505
    WorstPerturbation: [1x1 ss]

This returns the disk-based gain and phase margins for the feedback loop L. These values coincide
with the ranges displayed for the scaled uncertainty Fsafe.

Choice of Skew

In the calculations above, you used getDGM to map ±50% gain and ±30° phase uncertainty into the
disk of uncertainty F. You used the 'tight' option, which picks the smallest disk that captures both
the specified gain and phase uncertainty. Examining the range of gain and variations encompassed by
F again shows that the gain range is biased toward gain decrease.

plot(F)

Alternatively, you can use the 'balanced' option of getDGM to use a model with equal amounts of
(relative) gain increase and decrease. The balanced range corresponds to zero skew (sigma = 0) in
diskmargin.
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DGM = getDGM(1.5,30,'balanced');
Fbal = umargin('Fbal',DGM);
plot(Fbal)

This time the gain range shown in the left plot is symmetric.

Next, compare the disk of values for the two uncertainty models F and Fbal. The uncertainty disk is
larger for the 'balanced' option.

clf 
DGM = F.GainChange;
DGMbal = Fbal.GainChange;
diskmarginplot([DGM;DGMbal],'disk')
legend('F','Fbal')
title('Two models for 50% gain and 30 degree phase variations')
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Now compute the robust stability margin for the system with Fbal and compare the safe ranges of
gain and phase variations for the two models.

SM2 = robstab(feedback(L*Fbal,1));
Fbalsafe = uscale(Fbal,SM2.LowerBound);

DGMsafe = Fsafe.GainChange;
DGMbalsafe = Fbalsafe.GainChange;
diskmarginplot([DGMsafe;DGMbalsafe])
legend('F','Fbal')
title('Safe ranges of gain and phase variations')
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The 'tight' fit F yields a larger safe region and gets closer to the original robustness target (3.5 dB
gain margin and 30 degrees phase margin).

See Also
diskmarginplot | getDGM | plot (umargin) | umargin

More About
• “Uncertain Gain and Phase” on page 1-12
• “Stability Analysis Using Disk Margins” on page 2-2
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Sample Uncertain Systems
The command usample randomly samples the uncertain system at a specified number of points.
Randomly sample an uncertain system at 20 points in its modeled uncertainty range. This gives a 20-
by-1 ss array. Consequently, all analysis tools from Control System Toolbox™ are available.

p1 = ureal('p1',10,'Percentage',50); 
p2 = ureal('p2',3,'PlusMinus',[-.5 1.2]); 
p3 = ureal('p3',0); 
A = [-p1 p2; 0 -p1]; 
B = [-p2; p2+p3]; 
C = [1 0; 1 1-p3]; 
D = [0; 0]; 

sys = ss(A,B,C,D) % Create uncertain state-space model

sys =

  Uncertain continuous-time state-space model with 2 outputs, 1 inputs, 2 states.
  The model uncertainty consists of the following blocks:
    p1: Uncertain real, nominal = 10, variability = [-50,50]%, 2 occurrences
    p2: Uncertain real, nominal = 3, variability = [-0.5,1.2], 2 occurrences
    p3: Uncertain real, nominal = 0, variability = [-1,1], 2 occurrences

Type "sys.NominalValue" to see the nominal value, "get(sys)" to see all properties, and "sys.Uncertainty" to interact with the uncertain elements.

manysys = usample(sys,20); 
size(manysys)

20x1 array of state-space models.
Each model has 2 outputs, 1 inputs, and 2 states.

stepplot(manysys)
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The command stepplot can be called directly on a uss object. The default behavior samples the
uss object at 20 instances, and plots the step responses of these 20 models, as well as the nominal
value.

The same features are available for other analysis commands such as bodeplot, bodemag, impulse,
and nyquist.

See Also
usample | uss

Related Examples
• “Generate Samples of Uncertain Systems” on page 1-61
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Uncertain Model Interconnections

Feedback Around an Uncertain Plant
It is possible to form interconnections of uss objects. A common example is to form the feedback
interconnection of a given controller with an uncertain plant.

First create the uncertain plant. Start with two uncertain real parameters.

gamma = ureal('gamma',4); 
tau = ureal('tau',.5,'Percentage',30);

Next, create an unmodeled dynamics element, delta, and a first-order weighting function, whose DC
value is 0.2, high-frequency gain is 10, and whose crossover frequency is 8 rad/sec.

delta = ultidyn('delta',[1 1],'SampleStateDimension',5); 
W = makeweight(0.2,6,6);

Finally, create the uncertain plant consisting of the uncertain parameters and the unmodeled
dynamics.

P = tf(gamma,[tau 1])*(1+W*delta);

You can create an integral controller based on nominal plant parameters. Nominally the closed-loop
system will have damping ratio of 0.707 and time constant of 2*tau.

KI = 1/(2*tau.Nominal*gamma.Nominal); 
C = tf(KI,[1 0]);

Create the uncertain closed-loop system using the feedback command.

CLP = feedback(P*C,1);

Plot samples of the open-loop and closed-loop step responses. As expected the integral controller
reduces the variability in the low frequency response.

subplot(2,1,1); 
stepplot(P,5) 
subplot(2,1,2); 
stepplot(CLP,5)
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Basic Model Interconnections
All the model arithmetic and model-interconnection commands of Control System Toolbox software
work with uncertain models. These include:

• connect
• feedback
• series
• parallel
• append
• blkdiag
• lft
• stack

For more information about model interconnections, see “Model Interconnection”.
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Create Uncertain Frequency Response Data Models
Uncertain frequency responses (ufrd) arise naturally when computing the frequency response of an
uncertain state-space model (uss). They also arise when frequency response data in an frd model
object is combined with an uncertain matrix (umat) such as by adding, multiplying, or concatenating.

To take the frequency response of an uncertain state-space model, use the ufrd command. Construct
an uncertain state-space model.

p1 = ureal('p1',10,'pe',50); 
p2 = ureal('p2',3,'plusm',[-.5 1.2]); 
p3 = ureal('p3',0); 
A = [-p1 p2;0 -p1]; 
B = [-p2;p2+p3]; 
C = [1 0;1 1-p3]; 
D = [0;0]; 
sys = ss(A,B,C,D) 

sys =

  Uncertain continuous-time state-space model with 2 outputs, 1 inputs, 2 states.
  The model uncertainty consists of the following blocks:
    p1: Uncertain real, nominal = 10, variability = [-50,50]%, 2 occurrences
    p2: Uncertain real, nominal = 3, variability = [-0.5,1.2], 2 occurrences
    p3: Uncertain real, nominal = 0, variability = [-1,1], 2 occurrences

Type "sys.NominalValue" to see the nominal value, "get(sys)" to see all properties, and "sys.Uncertainty" to interact with the uncertain elements.

Compute the uncertain frequency response of the uncertain system. Use ufrd command with a
frequency grid of 100 points. The result is an uncertain frequency response model object, a ufrd
model.

sysg = ufrd(sys,logspace(-2,2,100))  

sysg =

  Uncertain continuous-time FRD model with 2 outputs, 1 inputs, 100 frequency points.
    p1: Uncertain real, nominal = 10, variability = [-50,50]%, 2 occurrences
    p2: Uncertain real, nominal = 3, variability = [-0.5,1.2], 2 occurrences
    p3: Uncertain real, nominal = 0, variability = [-1,1], 2 occurrences

Type "sysg.NominalValue" to see the nominal value, "get(sysg)" to see all properties, and "sysg.Uncertainty" to interact with the uncertain elements.

Properties of ufrd Model Objects

View the properties of the model object.

get(sysg)

        Frequency: [100x1 double]
    FrequencyUnit: 'rad/TimeUnit'
     ResponseData: [2x1x100x1 umat]
     NominalValue: [2x1 frd]
      Uncertainty: [1x1 struct]
       InputDelay: 0
      OutputDelay: [2x1 double]
               Ts: 0
         TimeUnit: 'seconds'
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        InputName: {''}
        InputUnit: {''}
       InputGroup: [1x1 struct]
       OutputName: {2x1 cell}
       OutputUnit: {2x1 cell}
      OutputGroup: [1x1 struct]
            Notes: [0x1 string]
         UserData: []
             Name: ''
     SamplingGrid: [1x1 struct]

The properties ResponseData and Frequency behave the same as the corresponding properties in
Control System Toolbox™ frd objects, except that ResponseData is an uncertain matrix (umat). The
properties InputName, OutputName, InputGroup, and OutputGroup behave in exactly the same
manner as for all of the Control System Toolbox model objects such as ss, zpk, tf, and frd.

The NominalValue property is an frd object. Hence all functions you can use to analyze frd objects
can also analyze ufrd objects. are available. When you use analysis commands such as bode or step
with an uncertain model, the command plots random samples of the response to give you a sense of
the variation. For instance, plot sampled Bode responses of the system along with the nominal
response, using a dot marker so that you can see the individual frequency points.

bode(sysg,'r.',sysg.NominalValue,'b.')

Just as with umat uncertain matrices and uss uncertain models, the Uncertainty property of the
ufrd model is a structure containing the uncertain elements. In the model sysg, all uncertain
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elements are ureal parameters. Change the nominal value of the uncertain element p1 within sysg
to 14, and plot the Bode response of the (new) nominal system.

sysg.Uncertainty.p1.NominalValue = 14

sysg =

  Uncertain continuous-time FRD model with 2 outputs, 1 inputs, 100 frequency points.
    p1: Uncertain real, nominal = 14, variability = [-50,50]%, 2 occurrences
    p2: Uncertain real, nominal = 3, variability = [-0.5,1.2], 2 occurrences
    p3: Uncertain real, nominal = 0, variability = [-1,1], 2 occurrences

Type "sysg.NominalValue" to see the nominal value, "get(sysg)" to see all properties, and "sysg.Uncertainty" to interact with the uncertain elements.

bode(sysg.NominalValue)

Lifting an frd model to a ufrd model

A non-uncertain frequency response model is equivalent to an uncertain frequency response model
with no uncertain elements. Use the ufrd command to “lift” an frd model to the ufrd class.

sys = rss(3,2,1); 
sysg = frd(sys,logspace(-2,2,100)); 
usysg = ufrd(sysg) 

usysg =

  Uncertain continuous-time FRD model with 2 outputs, 1 inputs, 100 frequency points, and no uncertain blocks.
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Type "usysg.NominalValue" to see the nominal value, "get(usysg)" to see all properties, and "usysg.Uncertainty" to interact with the uncertain elements.

You can also lift arrays of frd objects. See “Array Management for Uncertain Objects” on page 1-69
for more information about how arrays of uncertain objects are handled.

See Also
ufrd
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Simplifying Representation of Uncertain Objects
A minimal realization of the transfer function matrix

H s =

2
s + 1

4
s + 1

3
s + 1

6
s + 1

has only 1 state, obvious from the decomposition

H s =
2
3

1
s + 1 1 2 .

However, a “natural” construction, formed by

sys11 = ss(tf(2,[1 1])); 
sys12 = ss(tf(4,[1 1])); 
sys21 = ss(tf(3,[1 1])); 
sys22 = ss(tf(6,[1 1])); 
sys = [sys11 sys12;sys21 sys22] 
a = 
       x1  x2  x3  x4 
   x1  -1   0   0   0 
   x2   0  -1   0   0 
   x3   0   0  -1   0 
   x4   0   0   0  -1 
b = 
       u1  u2 
   x1   2   0 
   x2   0   2 
   x3   2   0 
   x4   0   2 
c = 
        x1   x2   x3   x4 
   y1    1    2    0    0 
   y2    0    0  1.5    3 
d = 
       u1  u2 
   y1   0   0 
   y2   0   0 
Continuous-time model 

has four states, and is nonminimal.

In the same manner, the internal representation of uncertain objects built up from uncertain elements
can become nonminimal, depending on the sequence of operations in their construction. The
command simplify employs ad-hoc simplification and reduction schemes to reduce the complexity
of the representation of uncertain objects. There are three levels of simplification: off, basic and full.
Each uncertain element has an AutoSimplify property whose value is either 'off', 'basic' or
'full'. The default value is 'basic'.

After (nearly) every operation, the command simplify is automatically run on the uncertain object,
cycling through all of the uncertain elements, and attempting to simplify (without error) the
representation of the effect of that uncertain object. The AutoSimplify property of each element
dictates the types of computations that are performed. In the 'off' case, no simplification is even
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attempted. In 'basic', fairly simple schemes to detect and eliminate nonminimal representations
are used. Finally, in 'full', numerical based methods similar to truncated balanced realizations are
used, with a very tight tolerance to minimize error.

Effect of the Autosimplify Property
Create an uncertain real parameter, view the AutoSimplify property of a, and then create a 1-by-2
umat, both of whose entries involve the uncertain parameter.

a = ureal('a',4); 
a.AutoSimplify 
ans = 
basic 
m1 = [a+4 6*a] 
UMAT: 1 Rows, 2 Columns 
  a: real, nominal = 4, variability = [-1  1], 1 occurrence 

Note that although the uncertain real parameter a appears in both (two) entries of the matrix, the
resulting uncertain matrix m1 only depends on “1 occurrence” of a.

Set the AutoSimplify property of a to 'off' (from 'basic'). Recreate the 1-by-2 umat. Now note
that the resulting uncertain matrix m2 depends on “2 occurrences” of a.

a.AutoSimplify = 'off'; 
m2 = [a+4 6*a] 
UMAT: 1 Rows, 2 Columns 
  a: real, nominal = 4, variability = [-1  1], 2 occurrences 

The 'basic' level of autosimplification often detects (and simplifies) duplication created by linear
terms in the various entries. Higher order (quadratic, bilinear, etc.) duplication is often not detected
by the 'basic' autosimplify level.

For example, reset the AutoSimplify property of a to 'basic' (from 'off'). Create an uncertain
real parameter, and a 1-by-2 umat, both of whose entries involve the square of the uncertain
parameter.

a.AutoSimplify = 'basic'; 
m3 = [a*(a+4) 6*a*a] 
UMAT: 1 Rows, 2 Columns 
  a: real, nominal = 4, variability = [-1  1], 4 occurrences 

Note that the resulting uncertain matrix m3 depends on “4 occurrences” of a.

Set the AutoSimplify property of a to 'full' (from 'basic'). Recreate the 1-by-2 umat. Now
note that the resulting uncertain matrix m4 depends on “2 occurrences” of a.

a.AutoSimplify = 'full'; 
m4 = [a*(a+4) 6*a*a] 
UMAT: 1 Rows, 2 Columns 
  a: real, nominal = 4, variability = [-1  1], 2 occurrences 

Although m4 has a less complex representation (2 occurrences of a rather than 4 as in m3), some
numerical variations are seen when both uncertain objects are evaluated at (say) 0.

usubs(m3,'a',0) 
ans = 
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     0     0 
usubs(m4,'a',0) 
ans = 
  1.0e-015 * 
   -0.4441         0 

Small numerical differences are also noted at other evaluation points. The example below shows the
differences encountered evaluating at a equal to 1.

usubs(m3,'a',1) 
ans = 
     5     6 
usubs(m4,'a',1) 
ans = 
    5.0000    6.0000 

Direct Use of simplify
The simplify command can be used to override all uncertain element's AutoSimplify property.
The first input to the simplify command is an uncertain object. The second input is the desired
reduction technique, which can either 'basic' or 'full'.

Again create an uncertain real parameter, and a 1-by-2 umat, both of whose entries involve the
square of the uncertain parameter. Set the AutoSimplify property of a to 'basic'.

a.AutoSimplify = 'basic'; 
m3 = [a*(a+4) 6*a*a] 
UMAT: 1 Rows, 2 Columns 
  a: real, nominal = 4, variability = [-1  1], 4 occurrences 

Note that the resulting uncertain matrix m3 depends on four occurrences of a.

The simplify command can be used to perform a 'full' reduction on the resulting umat.

m4 = simplify(m3,'full') 
UMAT: 1 Rows, 2 Columns 
  a: real, nominal = 4, variability = [-1  1], 2 occurrences

The resulting uncertain matrix m4 depends on only two occurrences of a after the reduction.

See Also
simplify

Related Examples
• “Introduction to Uncertain Elements” on page 1-2
• “Decomposing Uncertain Objects” on page 1-82
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Generate Samples of Uncertain Systems
Use the usample function to randomly sample an uncertain model, returning one or more non-
uncertain instances of the uncertain model.

Generating One Sample
If A is an uncertain object, then usample(A) generates a single sample of A.

For example, a sample of a ureal is a scalar double.

A = ureal('A',6); 
B = usample(A) 
B = 
    5.7298 

Create a 1-by-3 umat with A and an uncertain complex parameter C. A single sample of this umat is a
1-by-3 double.

C = ucomplex('C',2+6j); 
M = [A C A*A]; 
usample(M) 
ans = 
   5.9785             1.4375 + 6.0290i  35.7428          

Generating Many Samples
If A is an uncertain object, then usample(A,N) generates N samples of A.

For example, 20 samples of a ureal gives a 1-by-1-20 double array.

B = usample(A,20); 
size(B) 
ans = 
     1     1    20 

Similarly, 30 samples of the 1-by-3 umat M yields a 1-by-3-by-30 array.

size(usample(M,30)) 
ans = 
     1     3    30 

See “Sample Uncertain Elements to Create Arrays” on page 1-75 for more information on sampling
uncertain objects.

Sampling Uncertain LTI Dynamics
When sampling an ultidyn element or an uncertain object that contains a ultidyn element, the
result is always a state-space (ss) object. The property SampleStateDimension of the ultidyn
class determines the state dimension of the samples. The same is true when sampling umargin
objects, since these are a type of dynamic uncertainty.

Create a 1-by-1, gain bounded ultidyn object with gain bound 4. Verify that the default state
dimension for samples is 3.
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del = ultidyn('del',[1 1],'Bound',4); 
del.SampleStateDimension

ans = 3

Sample the uncertain element at 30 points. Verify that this creates a 30-by-1 ss array of 1-input, 1-
output, 1-state systems.

rng(0)  % for reproducibility
delS = usample(del,30); 
size(delS)

30x1 array of state-space models.
Each model has 1 outputs, 1 inputs, and 3 states.

Plot the Nyquist plot of these samples and add a disk of radius 4, the gain bound of del.

nyquist(delS) 
hold on; 
theta = linspace(-pi,pi); 
plot(del.Bound*exp(sqrt(-1)*theta),'r'); 
hold off;

Change SampleStateDimension to 1, and repeat entire procedure. The Nyquist plots again satisfy
the gain bound, but the Nyquist plots are all circles, indicative of 1st order systems.

del.SampleStateDimension = 1; 
delS = usample(del,30);   
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nyquist(delS) 
hold on; 
theta = linspace(-pi,pi); 
plot(del.Bound*exp(sqrt(-1)*theta),'r'); 
hold off;

With SampleStateDimension = 1, all Nyquist plots touch the gain boundary at either (–1,0) or
(1,0) (frequency = 0 or Inf). Higher sampling dimension yields a Nyquist curve that reaches the gain
bound at more frequencies, yielding more thorough coverage.

Create a umargin object using the default SampleStateDimension. The umargin block models
uncertain gain and phase. The modeled variations are within bounded ranges. For this example use a
umargin block that captures relative gain variations of a factor of two in either direction, and phase
variations of ±30°.

DGM = getDGM(2,30,'tight');
F = umargin('F')

F = 
  Uncertain gain/phase "F" with relative gain change in [0.5,2] and phase change of ±36.9 degrees.

The samples of a umargin block are also state-space models.

Fs = usample(F,30);
size(Fs)
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30x1 array of state-space models.
Each model has 1 outputs, 1 inputs, and 3 states.

Plot the samples on the Nyquist plane.

nyquist(Fs)

The Nyquist plot of any sample of F stays within the disk of uncertainty modeled by F. To confirm this
bound, use plot to examine the uncertainty disk. Compare the Nyquist plot above with the right side
of the following plot.

plot(F)
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For further details about the gain and phase uncertainty model, see umargin.

See Also
usample | usubs

Related Examples
• “Evaluate Uncertain Elements by Substitution” on page 1-25
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Substitution by usubs
If an uncertain matrix or model object (umat, uss, ufrd) has many uncertain parameters, it is often
useful to freeze some, but not all, of the uncertain parameters to specific values for analysis. The
usubs command accomplishes this, and also allows more complicated substitutions for an element.

usubs accepts a list of element names and respective values to substitute for them. For example, can
create three uncertain real parameters and use them to create a 2-by-2 uncertain matrix, A.

delta = ureal('delta',2); 
eta = ureal('eta',6); 
rho = ureal('rho',-1); 
A = [3+delta+eta delta/eta;7+rho rho+delta*eta] 

A =

  Uncertain matrix with 2 rows and 2 columns.
  The uncertainty consists of the following blocks:
    delta: Uncertain real, nominal = 2, variability = [-1,1], 2 occurrences
    eta: Uncertain real, nominal = 6, variability = [-1,1], 3 occurrences
    rho: Uncertain real, nominal = -1, variability = [-1,1], 1 occurrences

Type "A.NominalValue" to see the nominal value, "get(A)" to see all properties, and "A.Uncertainty" to interact with the uncertain elements.

Use usubs to substitute the uncertain element named delta in A with the value 2.3, leaving all other
uncertain elements intact. That the result, B, is an uncertain matrix with dependence only on eta and
rho.

B = usubs(A,'delta',2.3) 

B =

  Uncertain matrix with 2 rows and 2 columns.
  The uncertainty consists of the following blocks:
    eta: Uncertain real, nominal = 6, variability = [-1,1], 3 occurrences
    rho: Uncertain real, nominal = -1, variability = [-1,1], 1 occurrences

Type "B.NominalValue" to see the nominal value, "get(B)" to see all properties, and "B.Uncertainty" to interact with the uncertain elements.

To set multiple elements, list individually, or group the values in a data structure. For instance, the
following code creates identical uncertain matrices B1 and B2. In each case, you replace delta by
2.3, and eta by the uncertain real parameter A.Uncertainty.rho.

B1 = usubs(A,'delta',2.3,'eta',A.Uncertainty.rho)

B1 =

  Uncertain matrix with 2 rows and 2 columns.
  The uncertainty consists of the following blocks:
    rho: Uncertain real, nominal = -1, variability = [-1,1], 4 occurrences

Type "B1.NominalValue" to see the nominal value, "get(B1)" to see all properties, and "B1.Uncertainty" to interact with the uncertain elements.

S.delta = 2.3;
S.eta = A.Uncertainty.rho;
B2 = usubs(A,S)

B2 =
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  Uncertain matrix with 2 rows and 2 columns.
  The uncertainty consists of the following blocks:
    rho: Uncertain real, nominal = -1, variability = [-1,1], 4 occurrences

Type "B2.NominalValue" to see the nominal value, "get(B2)" to see all properties, and "B2.Uncertainty" to interact with the uncertain elements.

usubs ignores substitutions that do not match uncertain parameters in the model or matrix. For
example, the following returns an uncertain matrix that is the same as A.

B3 = usubs(A,'fred',5); 

Specifying the Substitution with Structures

An alternative syntax for usubs is to specify the substituted values in a structure, whose field names
are the names of the elements being substituted with values. For example, create a structure NV with
fields delta and eta. Set the values of these fields to be the desired values for substitution. Then
perform the substitution with usubs.

NV.delta = 2.3; 
NV.eta = A.Uncertainty.rho; 
B4 = usubs(A,NV)

B4 =

  Uncertain matrix with 2 rows and 2 columns.
  The uncertainty consists of the following blocks:
    rho: Uncertain real, nominal = -1, variability = [-1,1], 4 occurrences

Type "B4.NominalValue" to see the nominal value, "get(B4)" to see all properties, and "B4.Uncertainty" to interact with the uncertain elements.

Here, B4 is the same as B1 and B2 above. Again, any superfluous fields are ignored. Therefore,
adding an additional field gamma to NV does not alter the result of substitution.

NV.gamma = 0; 
B5 = usubs(A,NV)

B5 =

  Uncertain matrix with 2 rows and 2 columns.
  The uncertainty consists of the following blocks:
    rho: Uncertain real, nominal = -1, variability = [-1,1], 4 occurrences

Type "B5.NominalValue" to see the nominal value, "get(B5)" to see all properties, and "B5.Uncertainty" to interact with the uncertain elements.

B5 is the same as B4.

Analysis commands such as wcgain, robstab, and usample all return substitutable values in this
structure format.

Nominal and Random Values

To fix specified elements to their nominal values, use the replacement value 'Nominal'. To set an
element to a random value, use 'Random'. For example, create a numeric matrix by fixing uncertain
parameters in A: Set eta to its nominal value, set delta to a random value, and set rho to 6.5.

B6 = usubs(A,'eta','Nominal','delta','Random','rho',6.5) 

B6 = 2×2
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   11.6294    0.4382
   13.5000   22.2767

In the structure format, to set an uncertain element to its nominal value, set the corresponding value
in the structure.

S = struct('eta',A.Uncertainty.eta.NominalValue,'rho',6.5);
B7 = usubs(A,S)

B7 =

  Uncertain matrix with 2 rows and 2 columns.
  The uncertainty consists of the following blocks:
    delta: Uncertain real, nominal = 2, variability = [-1,1], 2 occurrences

Type "B7.NominalValue" to see the nominal value, "get(B7)" to see all properties, and "B7.Uncertainty" to interact with the uncertain elements.

Use usample to set the remaining element to a random value.

B8 = usample(B7,'delta',1)

B8 = 2×2

   11.8116    0.4686
   13.5000   23.3695

See Also
usample | usubs

Related Examples
• “Sample Uncertain Systems” on page 1-50
• “Evaluate Uncertain Elements by Substitution” on page 1-25
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Array Management for Uncertain Objects
All of the uncertain system classes (uss, ufrd) may be multidimensional arrays. This is intended to
provide the same functionality as the LTI-arrays of the Control System Toolbox software. The
command size returns a row vector with the sizes of all dimensions.

The first two dimensions correspond to the outputs and inputs of the system. Any dimensions beyond
are referred to as the array dimensions. Hence, if szM = size(M), then szM(3:end) are sizes of
the array dimensions of M.

For these types of objects, it is clear that the first two dimensions (system output and input) are
interpreted differently from the 3rd, 4th, 5th and higher dimensions (which often model parametrized
variability in the system input/output behavior).

umat objects are treated in the same manner. The first two dimensions are the rows and columns of
the uncertain matrix. Any dimensions beyond are the array dimensions.

Reference Into Arrays
Suppose M is a umat, uss or ufrd, and that Yidx and Uidx are vectors of integers. Then

M(Yidx,Uidx) 

selects the outputs (rows) referred to by Yidx and the inputs (columns) referred to by Uidx,
preserving all of the array dimensions. For example, if size(M) equals [4 5 3 6 7], then (for
example) the size of M([4 2],[1 2 4]) is [2 3 3 6 7].

If size(M,1)==1 or size(M,2)==1, then single indexing on the inputs or outputs (rows or columns)
is allowed. If Sidx is a vector of integers, then M(Sidx) selects the corresponding elements. All
array dimensions are preserved.

If there are K array dimensions, and idx1, idx2, ..., idxK are vectors of integers, then

G = M(Yidx,Uidx,idx1,idx2,...,idxK) 

selects the outputs and inputs referred to by Yidx and Uidx, respectively, and selects from each
array dimension the “slices” referred to by the idx1, idx2,..., idxK index vectors.
Consequently, size(G,1) equals length(Yidx), size(G,2) equals length(Uidx),
size(G,3) equals length(idx1), size(G,4) equals length(idx2), and size(G,K+2) equals
length(idxK).

If M has K array dimensions, and less than K index vectors are used in doing the array referencing,
then the MATLAB convention for single indexing is followed. For instance, suppose size(M) equals
[3 4 6 5 7 4]. The expression

G = M([1 3],[1 4],[2 3 4],[5 3 1],[8 10 12 2 4 20 18]) 

is valid. The result has size(G) equals [2 2 3 3 7] . The last index vector [8 10 12 2 4 20
18] is used to reference into the 7-by-4 array, preserving the order dictated by MATLAB single
indexing (e.g., the 10th element of a 7-by-4 array is the element in the (3,2) position in the array).

Note that if M has either one output (row) or one input (column), and M has array dimensions, then it
is not allowable to combine single indexing in the output/input dimensions along with indexing in the
array dimensions. This will result in an ambiguity in how to interpret the second index vector in the
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expression (i.e., “does it correspond to the input/output reference, or does it correspond to the first
array dimension?”).

See Also

Related Examples
• “Model Arrays”
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Create Arrays with stack and cat Functions
An easy manner to create an array is with stack. Create a [4-by-1] umat array by stacking four 1-
by-3 umat objects with the stack command. The first argument of stack specifies in which array
dimension the stacking occurs. In the example below, the stacking is done is the 1st array dimension,
hence the result is a 1-by-3-by-4-by-1 umat, referred to as a 4-by-1 umat array.

a = ureal('a',4); 
b = ureal('b',2); 
M = stack(1,[a b 1],[-a -b 4+a],[4 5 6],[a 0 0]) 
UMAT: 1 Rows, 3 Columns [array, 4 x 1] 
  a: real, nominal = 4, variability = [-1  1], 1 occurrence 
  b: real, nominal = 2, variability = [-1  1], 1 occurrence 
size(M) 
ans = 
     1     3     4 
arraysize(M) 
ans = 
     4     1 

Check that result is valid. Use referencing to access parts of the [4-by-1] umat array and compare to
the expected values. The first 4 examples should all be arrays full of 0 (zeros). The last two should be
the value 5, and the uncertain real parameter a, respectively.

simplify(M(:,:,1) - [a b 1]) 
ans = 
     0     0     0 
simplify(M(:,:,2) - [-a -b 4+a]) 
ans = 
     0     0     0 
simplify(M(:,:,3) - [4 5 6]) 
ans = 
     0     0     0 
simplify(M(:,:,4) - [a 0 0]) 
ans = 
     0     0     0 
simplify(M(1,2,3))  % should be 5 
ans = 
     5 
simplify(M(1,3,2)-4)
Uncertain Real Parameter: Name a, NominalValue 4, variability = [-1  1] 

You can create a random 1-by-3-by-4 double matrix and stack this with M along the second array
dimension, creating a 1-by-3-by-4-by-2 umat.

N = randn(1,3,4); 
M2 = stack(2,M,N); 
size(M2) 
ans = 
     1     3     4     2 
arraysize(M2) 
ans = 
     4     2 

As expected, both M and N can be recovered from M2.

d1 = simplify(M2(:,:,:,1)-M); 
d2 = simplify(M2(:,:,:,2)-N); 
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[max(abs(d1(:))) max(abs(d2(:)))] 
ans = 
     0     0 

It is also possible to stack M and N along the 1st array dimension, creating a 1-by-3-by-8-by-1 umat.

M3 = stack(1,M,N); 
size(M3) 
ans = 
     1     3     8 
arraysize(M3) 
ans = 
     8     1 

As expected, both M and N can be recovered from M3.

d3 = simplify(M3(:,:,1:4)-M); 
d4 = simplify(M3(:,:,5:8)-N); 
[max(abs(d3(:))) max(abs(d4(:)))] 
ans = 
     0     0 
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Create Arrays by Assignment
Arrays can be created by direct assignment. As with other MATLAB classes, there is no need to
preallocate the variable first. Simply assign elements – all resizing is performed automatically.

For instance, an equivalent construction to

a = ureal('a',4); 
b = ureal('b',2); 
M = stack(1,[a b 1],[-a -b 4+a],[4 5 6],[a 0 0]); 
is 
Mequiv(1,1,1) = a; 
Mequiv(1,2,1) = b; 
Mequiv(1,3,1) = 1; 
Mequiv(1,:,4) = [a 0 0]; 
Mequiv(1,:,2:3) = stack(1,[-a -b 4+a],[4 5 6]); 

The easiest manner for you to verify that the results are the same is to subtract and simplify,

d5 = simplify(M-Mequiv); 
max(abs(d5(:))) 
ans = 
     0 
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Binary Operations with Arrays
Most operations simply cycle through the array dimensions, doing pointwise operations. Assume A
and B are umat (or uss, or ufrd) arrays with identical array dimensions (slot 3 and beyond). The
operation C = fcn(A,B) is equivalent to looping on k1, k2, ..., setting

C(:,:,k1,k2,...) = fcn(A(:,:,k1,k2,...),B(:,:,k1,k2,...)) 

The result C has the same array dimensions as A and B. The user is required to manage the extra
dimensions (i.e., keep track of what they mean). Methods such as permute, squeeze and reshape are
included to facilitate this management.

In general, any binary operation requires that the extra-dimensions are compatible. The umat, uss
and ufrd objects allow for slightly more flexible interpretation of this. For illustrative purposes,
consider a binary operation involving variables A and B. Suppose the array dimensions of A are
n1 × … × nlA and that the array dimensions of B are m1 × … × mlB. By MATLAB convention, the
infinite number of singleton (i.e., 1) trailing dimensions are not listed. The compatibility of the extra
dimensions is determined by the following rule: If lA = lB, then pad the shorter dimension list with
trailing 1's. Now compare the extra dimensions: In the k-th dimension, it must be that one of 3
conditions hold: nk = mk, or nk = 1, or mk = 1. In other words, non-singleton dimensions must
exactly match (so that the pointwise operation can be executed), and singleton dimensions match
with anything, implicitly through a repmat.
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Sample Uncertain Elements to Create Arrays
A common way to generate an array is to sample the uncertain elements of an uncertain object. This
example shows how to generate arrays by taking random samples of a umat uncertain matrix that has
two uncertain elements. (To generate arrays by sampling at specific values, use usubs.)

Create an uncertain matrix.

a = ureal('a',4); 
b = ureal('b',2);
M = [a b;b*b a/b;1-b 1+a*b]

M =

  Uncertain matrix with 3 rows and 2 columns.
  The uncertainty consists of the following blocks:
    a: Uncertain real, nominal = 4, variability = [-1,1], 3 occurrences
    b: Uncertain real, nominal = 2, variability = [-1,1], 6 occurrences

Type "M.NominalValue" to see the nominal value, "get(M)" to see all properties, and "M.Uncertainty" to interact with the uncertain elements.

Sample the uncertain real parameter b in the matrix M, at 20 random points within its range.

[Ms,bvalues] = usample(M,'b',20);

This results in an array of 20 3-by-2 umat matrices, with only one uncertain element, a. The uncertain
element b of M has been sampled out, leaving a new array dimension in its place.

Ms

Ms =

  20x1 array of uncertain matrices with 3 rows, 2 columns, and the following uncertain blocks:
    a: Uncertain real, nominal = 4, variability = [-1,1], 3 occurrences

Type "Ms.NominalValue" to see the nominal value, "get(Ms)" to see all properties, and "Ms.Uncertainty" to interact with the uncertain elements.

Additionally, bvalues is a structure containing the corresponding sampled values of b.

bvalues

bvalues=20×1 struct array with fields:
    b

Next, sample the remaining uncertain real parameter a in the matrix Ms. This removes the second
uncertain block, resulting in a 3-by-2-by-20-by-15 double.

[Mss,avalues] = usample(Ms,'a',15);
size(Mss)

ans = 1×4

     3     2    20    15

You can also sample multiple parameters at once. The following operation returns Mss1, which is
identical to Mss.
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[Mss1,values] = usample(M,'b',20,'a',15);

Rather than sampling each variable (a and b) independently, generating a 20-by-15 grid in a 2-
dimensional space, you can sample the two-dimensional space directly. Sample the 2-dimensional
space with 800 points.

[Ms2d,values] = usample(M,{'a' 'b'},800);

Ms2d is a 3-by-2-by-800 umat array, where each entry corresponds to a different randomly selected
(a,b) pair. The structure array values contains these (a,b) values.

values

values=800×1 struct array with fields:
    a
    b

See Also
umat | usample | usubs

Related Examples
• “Substitute Uncertain Elements to Create Arrays” on page 1-77
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Substitute Uncertain Elements to Create Arrays
You can generate an array from an uncertain object by replacing the uncertain elements with
specified values. There are several ways to do this using usubs.

Create a 3-by-2 uncertain matrix using two uncertain real parameters.

a = ureal('a',4); 
b = ureal('b',2); 
M = [a b;b*b a/b;1-b 1+a*b];

Evaluate the matrix at four different combinations of values for the uncertain parameters a and b.

avals = [1;2;3;4];
bvals = [10;11;12;13];
M1 = usubs(M,'a',avals,'b',bvals);

This command evaluates M for the four different (a,b) combinations (1,10), (2,11), and so on.
Therefore, M1 is a 3-by-2-by-4 double array containing the four evaluated values of M along its last
dimension.

size(M1)

ans = 1×3

     3     2     4

For more examples, see usubs.

See Also
umat | usample | usubs

Related Examples
• “Sample Uncertain Elements to Create Arrays” on page 1-75
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Create Arrays with gridureal
The command gridureal enables uniform sampling of specified uncertain real parameters within an
uncertain object. It is a specialized case of usubs.

gridureal removes a specified uncertain real parameter and adds an array dimension (to the end of
the existing array dimensions). The new array dimension represents the uniform samples of the
uncertain object in the specified uncertain real parameter range.

Create a 2-by-2 uncertain matrix with three uncertain real parameters.

a = ureal('a',3,'Range',[2.5 4]); 
b = ureal('b',4,'Percentage',15); 
c = ureal('c',-2,'Plusminus',[-1 .3]); 
M = [a b;b c] 
UMAT: 2 Rows, 2 Columns 
  a: real, nominal = 3, range = [2.5  4], 1 occurrence         
  b: real, nominal = 4, variability = [-15  15]%, 2 occurrences 
  c: real, nominal = -2, variability = [-1  0.3], 1 occurrence 

Grid the uncertain real parameter b in M with 100 points. The result is a umat array, with dependence
on uncertain real parameters a and c.

Mgrid1 = gridureal(M,'b',100) 
UMAT: 2 Rows, 2 Columns [array, 100 x 1] 
  a: real, nominal = 3, range = [2.5  4], 1 occurrence        
  c: real, nominal = -2, variability = [-1  0.3], 1 occurrence 

Operating on the uncertain matrix M, grid the uncertain real parameter a with 20 points, the
uncertain real parameter b with 12 points, and the uncertain real parameter c with 7 points, The
result is a 2-by-2-by20-by-12-by7 double array.

Mgrid3 = gridureal(M,'a',20,'b',12,'c',7); 
size(Mgrid3) 
ans = 
     2     2    20    12     7 
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Create Arrays with repmat
The MATLAB command repmat is used to replicate and tile arrays. It works on the built-in objects of
MATLAB, namely double, char, as well as the generalized container objects cell and struct. The
identical functionality is provided for replicating and tiling uncertain elements (ureal, ultidyn,
etc.) and umat objects.

You can create an uncertain real parameter, and replicate it in a 2-by-3 uncertain matrix. Compare to
generating the same uncertain matrix through multiplication.

a = ureal('a',5); 
Amat = repmat(a,[2 3]) 
UMAT: 2 Rows, 3 Columns 
  a: real, nominal = 5, variability = [-1  1], 1 occurrence 
Amat2 = a*ones(2,3); 
simplify(Amat-Amat2) 
ans = 
     0     0     0 
     0     0     0 

Create a [4-by-1] umat array by stacking four 1-by-3 umat objects with the stack command. Use
repmat to tile this 1-by-3-by-4-by-1 umat, into a 2-by-3-by-8-by-5 umat.

a = ureal('a',4); 
b = ureal('b',2); 
M = stack(1,[a b 1],[-a -b 4+a],[4 5 6],[a 0 0]); 
size(M) 
ans = 
     1     3     4 
Mtiled = repmat(M,[2 1 2 5]) 
UMAT: 2 Rows, 3 Columns [array, 8 x 5] 
  a: real, nominal = 4, variability = [-1  1], 1 occurrence 
  b: real, nominal = 2, variability = [-1  1], 1 occurrence 
Verify the equality of M and a few certain tiles of Mtiled. 
d1 = simplify(M-Mtiled(2,:,5:8,3)); 
d2 = simplify(M-Mtiled(1,:,1:4,2)); 
d3 = simplify(M-Mtiled(2,:,1:4,5)); 
[max(abs(d1(:))) max(abs(d2(:))) max(abs(d3(:)))] 
ans = 
     0     0     0 

Note that repmat never increases the complexity of the representation of an uncertain object. The
number of occurrences of each uncertain element remains the same, regardless of the extent of the
replication and tiling.

 Create Arrays with repmat

1-79



Create Arrays with repsys
Replicate and tile uncertain state-space (uss) and uncertain frequency response data (ufrd) models
with repsys. The syntax and behavior are the same as the manner in which repmat is used to
replicate and tile matrices. The syntax and behavior of repsys for uss and ufrd objects are the
same as the traditional repsys which operates on ss and frd objects. Just as in those cases, the
uncertain version of repsys also allows for diagonal tiling.
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Using permute and ipermute
The commands permute and ipermute are generalizations of transpose, which exchanges the
rows and columns of a two-dimensional matrix.

permute(A,ORDER) rearranges the dimensions of A so that they are in the order specified by the
vector ORDER. The array produced has the same values of A but the order of the subscripts needed to
access any particular element are rearranged as specified by ORDER. The elements of ORDER must be
a rearrangement of the numbers from 1 to N.

All of the uncertain objects are essentially 2-dimensional (output and input) operators with array
dependence. This means that the first 2 dimensions are treated differently from dimensions 3 and
beyond. It is not permissible to permute across these groups.

For uss and ufrd, the restriction is built into the syntax. The elements of the ORDER vector only refer
to array dimensions. Therefore, there is no possibility of permute across these dimensions. In you
need to permute the first two dimensions, use the command transpose instead.

For umat, the restriction is enforced in the software. The elements of the ORDER vector refer to all
dimensions. However, the first two elements of ORDER must be a rearrangement of the numbers 1 and
2. The remaining elements of ORDER must be a rearrangement of the numbers 3 through N. If either
of those conditions fail, an error is generated. Hence, for umat arrays, either permute or transpose
can be used to effect the transpose operation.
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Decomposing Uncertain Objects
Each uncertain model or matrix (such as uss, genss, ufrd, or umat, ) is a generalized feedback
connection (lft) of a not-uncertain object (e.g., double, ss, frd) with a diagonal augmentation of
uncertain elements (ureal, ultidyn, umargin, ucomplex, ucomplexm, udyn). In robust control
jargon, if the uncertain elements are normalized, this decomposition is often called “the M/D form.”

The purpose of the uncertain objects (ureal, ultidyn, umat, uss, etc.) is to hide this underlying
decomposition, and allow the user to focus on modeling and analyzing uncertain systems, rather than
the details of correctly propagating the M/D representation in manipulations. Nevertheless, advanced
users may want access to the familiar M/D form. The command lftdata accomplishes this
decomposition.

Since ureal, umargin, ucomplex and ucomplexm do not have their NominalValue necessarily at
zero, and in the case of ureal and umargin objects, are not necessarily symmetric about the
NominalValue, some details are required in describing the decomposition.

Normalizing Functions for Uncertain Elements
Associated with each uncertain element is a normalizing function. The normalizing function maps the
uncertain element into a normalized uncertain element. Regardless of element type, as the uncertain
element varies over its range, the absolute value of the normalizing function (or norm, in the matrix
case) varies from 0 and 1.

Uncertain Real Parameter (ureal)

If ρ is an uncertain real parameter, with range [L R] and nominal value N, then the normalizing
function F is

F ρ = A + Bρ
C + Dρ

with the property that for all ρ satisfying L ≤ ρ ≤ R, it follows that –1 ≤ F(ρ) ≤ 1, moreover, F(L) = –1,
F(N) = 0, and F(R) = 1. If the nominal value is centered in the range, then it is easy to conclude that

A = R + L
R− L

B = 2
R− L

C = 1
D = 0.

It is left as an algebra exercise for the user to work out the various values for A, B, C and D when
the nominal value is not centered.

Uncertain Linear Time-Invariant Dynamic Uncertainty (ultidyn)

If E is an uncertain gain-bounded, linear, time-invariant dynamic uncertainty, with gain-bound β, then
the normalizing function F is

F E = 1
βE .
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If E is an uncertain positive-real, linear, time-invariant dynamic uncertainty, with positivity bound β,
then the normalizing function F is

F E = I − α E− β
2 I I + α E− β

2 I
−1

where α = 2|β| + 1.

Uncertain Gain and Phase (umargin)

For a umargin block Q(s), the normalized value F(Q(s)) = δ(s), where δ(s) is a gain-bounded dynamic
uncertainty, normalized so that it always varies within the unit disk (||δ||∞ < 1). In other words, F(Q)
is a unit-gain ultidyn uncertain element.

The actual values of Q map to the unit-gain δ via the parameterization

Q s = 1 + α 1− E /2 δ s
1− α 1 + E /2 δ s .

For details about this parameterization, see umargin.

Uncertain Complex Parameters (ucomplex)

The normalizing function for an uncertain complex parameter ξ, with nominal value C and radius γ, is

F ξ = 1
γ ξ − C .

Uncertain Complex Matrices (umat)

The normalizing function for uncertain complex matrices H, with nominal value N and weights WL
and WR is

F H = WL
−1 H − N WR

−1

Properties of the Decomposition
Take an uncertain object A, dependent on:

• Uncertain real parameters ρ1,...,ρNρ

• Uncertain complex parameters ξ1,...,ξNξ

• Uncertain complex matrices H1,...,HNH

• Uncertain gain-bounded linear, time-invariant dynamics E1,...,ENE

• Uncertain positive-real linear, time-invariant dynamics P1,...,PNP

• Uncertain gain and phase Q1,…,QNQ

Write A(ρ,ξ,H,E,P,Q) to indicate this dependence. Using lftdata, A can be decomposed into two
separate pieces: M and Δ(ρ,ξ,H,E,P,Q) with the following properties:

• M is certain (i.e., if A is uss, then M is ss; if A is umat, then M is double; if A is ufrd, then M is
frd).

• Δ is always a umat, depending on the same uncertain elements as A, with ranges, bounds,
weights, etc., unaltered.
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• The form of Δ is block diagonal, with elements made up of the normalizing functions acting on the
individual uncertain elements:

Δ ρ, ξ, H, E, P, Q =

F ρ 0 0 0 0 0
0 F ξ 0 0 0 0
0 0 F H 0 0 0
0 0 0 F E 0 0
0 0 0 0 F P
0 0 0 0 0 F Q

.

• A(ρ,ξ,H,E,P,Q) is given by a linear fractional transformation of M and Δ(ρ,ξ,H,E,P,Q),

A ρ, ξ, H, E, P, Q = M22 + M21Δ ρ, ξ, H, E, P, Q I −M11Δ ρ, ξ, H, E, P, Q −1M12 .

The order of the normalized elements making up A is not the simple order shown above. It is actually
the same order as given by the command fieldnames(M.Uncertainty), as shown in the following
example.

Decompose Uncertain Model Using lftdata
You decompose an uncertain model into a fixed certain part and normalized uncertain part using the
lftdata command. To see how this command works, create a 2-by-2 uncertain matrix (umat) using
three uncertain real parameters.

delta = ureal('delta',2); 
eta = ureal('eta',6); 
rho = ureal('rho',-1); 
A = [3+delta+eta delta/eta;7+rho rho+delta*eta]

A =

  Uncertain matrix with 2 rows and 2 columns.
  The uncertainty consists of the following blocks:
    delta: Uncertain real, nominal = 2, variability = [-1,1], 2 occurrences
    eta: Uncertain real, nominal = 6, variability = [-1,1], 3 occurrences
    rho: Uncertain real, nominal = -1, variability = [-1,1], 1 occurrences

Type "A.NominalValue" to see the nominal value, "get(A)" to see all properties, and "A.Uncertainty" to interact with the uncertain elements.

The umat A depends on two occurrences of delta, three occurrences of eta, and one occurrence of
rho.

Decompose A into M and Delta.

[M,Delta] = lftdata(A);

M is a numeric matrix.

M

M = 8×8

         0         0         0   -0.1667         0         0    1.0000    0.1667
         0         0         0         0    1.0000         0         0    6.0000
         0         0         0         0         0         0    1.0000         0
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         0         0         0   -0.1667         0         0         0    0.1667
         0         0         0         0         0         0         0    1.0000
         0         0         0         0         0         0    1.0000    1.0000
    1.0000         0    1.0000   -0.3333         0         0   11.0000    0.3333
         0    1.0000         0         0    2.0000    1.0000    6.0000   11.0000

Delta is a umat with the same uncertainty dependence as A.

Delta

Delta =

  Uncertain matrix with 6 rows and 6 columns.
  The uncertainty consists of the following blocks:
    delta: Uncertain real, nominal = 2, variability = [-1,1], 2 occurrences
    eta: Uncertain real, nominal = 6, variability = [-1,1], 3 occurrences
    rho: Uncertain real, nominal = -1, variability = [-1,1], 1 occurrences

Type "Delta.NominalValue" to see the nominal value, "get(Delta)" to see all properties, and "Delta.Uncertainty" to interact with the uncertain elements.

To examine some of the characteristics of Delta, sample it at three points. Note that:

• The sampled value of Delta is always diagonal.
• The sampled values always range between -1 and 1, because Delta is normalized.
• The sampled matrices each contain three independent values. Duplication of the entries is

consistent with the dependence of Delta and A on the three uncertain real parameters.

usample(Delta,3)

ans = 
ans(:,:,1) =

    0.6294         0         0         0         0         0
         0    0.6294         0         0         0         0
         0         0    0.8268         0         0         0
         0         0         0    0.8268         0         0
         0         0         0         0    0.8268         0
         0         0         0         0         0   -0.4430

ans(:,:,2) =

    0.8116         0         0         0         0         0
         0    0.8116         0         0         0         0
         0         0    0.2647         0         0         0
         0         0         0    0.2647         0         0
         0         0         0         0    0.2647         0
         0         0         0         0         0    0.0938

ans(:,:,3) =

   -0.7460         0         0         0         0         0
         0   -0.7460         0         0         0         0
         0         0   -0.8049         0         0         0
         0         0         0   -0.8049         0         0
         0         0         0         0   -0.8049         0
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         0         0         0         0         0    0.9150

Verify that the maximum gain of Delta is 1.

maxnorm = wcnorm(Delta)

maxnorm = struct with fields:
    LowerBound: 0
    UpperBound: 1.0008

Finally, verify that lft(Delta,M) is the same as A. To do so, take the difference, and use the 'full'
option in simplify to remove redundant dependencies on uncertain elements.

simplify(lft(Delta,M)-A,'full')

ans = 2×2

     0     0
     0     0

Advanced Syntax of lftdata

Even for the advanced user, the variable Delta will actually not be that useful, as it is still a complex
object. On the other hand, its internal structure is described completely using a 3rd (and 4th) output
argument.

[M,Delta,BlkStruct,NormUnc] = lftdata(A); 

The rows of BlkStruct correspond to the uncertain elements named in
fieldnames(A.Uncertainty). The elements of BlkStruct describe the size, type and number-of-
copies of the uncertain elements in A, and implicitly delineate the exact block-diagonal structure of
Delta. Note that the range/bound information about each uncertain element is not included in
BlkStruct.

BlkStruct(1)

ans = struct with fields:
           Name: 'delta'
           Size: [1 1]
           Type: 'ureal'
    Occurrences: 2
       Simplify: 2

BlkStruct(2) 

ans = struct with fields:
           Name: 'eta'
           Size: [1 1]
           Type: 'ureal'
    Occurrences: 3
       Simplify: 2

BlkStruct(3) 
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ans = struct with fields:
           Name: 'rho'
           Size: [1 1]
           Type: 'ureal'
    Occurrences: 1
       Simplify: 2

Together, these entries mean that Delta is a block diagonal augmentation of the normalized version
of the three uncertain elements.

The first element is named 'delta'. It is 1-by-1; it is of class ureal; and there are two copies
diagonally augmented.

The second element is named 'eta'. It is 1-by-1; it is of class ureal; and there are three copies
diagonally augmented.

The third element is named 'rho'. It is 1-by-1; it is of class ureal; and there is one copy,

The fourth output argument of lftdata contains a cell array of normalized uncertain elements. The
cell array contains as many occurrences of each element as there are occurrences in the original
uncertain object A.

size(NormUnc) 

ans = 1×2

     6     1

NormUnc{1} 

ans = 
  Uncertain real parameter "deltaNormalized" with nominal value 0 and variability [-1,1].

isequal(NormUnc{2},NormUnc{1}) 

ans = logical
   1

NormUnc{3} 

ans = 
  Uncertain real parameter "etaNormalized" with nominal value 0 and variability [-1,1].

isequal(NormUnc{4},NormUnc{3}) 

ans = logical
   1

isequal(NormUnc{5},NormUnc{3}) 

ans = logical
   1
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NormUnc{6} 

ans = 
  Uncertain real parameter "rhoNormalized" with nominal value 0 and variability [-1,1].

Each normalized element has 'Normalized' appended to its original name to avoid confusion. When
normalized,

• ureal objects have nominal value of 0, and range from –1 to 1.
• ultidyn objects are norm bounded, with norm bound of 1.
• umargin objects are converted to norm-bounded ultidyn objects with norm bound of 1.
• ucomplex objects have nominal value of 0, and radius 1.
• ucomplexm objects have nominal value of 0, and identity matrices for each of the WL and WR

weights.

The possible behaviors of Delta and blkdiag(NormUnc{:}) are the same. Consequently, the
possible behaviors of A and lft(blkdiag(NormUnc{:}),M) are the same.

Hence, by manipulating M, BlkStruct and NormUnc, a you can have direct access to all of the linear
fractional transformation details, and can work at the level of the theorems and algorithms that
underlie the methods.

See Also
actual2normalized | lftdata | normalized2actual | uscale

Related Examples
• “Introduction to Uncertain Elements” on page 1-2
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Generalized Robustness Analysis

• “Stability Analysis Using Disk Margins” on page 2-2
• “Disk Margin and Smallest Destabilizing Perturbation” on page 2-14
• “MIMO Stability Margins for Spinning Satellite” on page 2-20
• “Robustness and Worst-Case Analysis” on page 2-27
• “Worst-Case Sensitivity Functions of Feedback Loops” on page 2-30
• “Robust Stability, Robust Performance and Mu Analysis” on page 2-33
• “Robustness of Servo Controller for DC Motor” on page 2-40
• “Getting Reliable Estimates of Robustness Margins” on page 2-51
• “Real Mu Analysis” on page 2-56
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Stability Analysis Using Disk Margins
Disk margins quantify the stability of a closed-loop system against gain or phase variations in the
open-loop response. In disk-based margin calculations, the software models such variations as disk-
shaped multiplicative uncertainty on the open-loop transfer function. The disk margin measures how
much uncertainty the loop can tolerate before going unstable.

That uncertainty amount corresponds to minimum gain and phase margins. The disk-based gain
margin DGM is the amount by which the loop gain can increase or decrease without loss of stability,
in absolute units. The disk-based phase margin DPM is the amount by which the loop phase can
increase or decrease without loss of stability, in degrees. These disk-based margins take into account
all frequencies and loop interactions. Therefore, disk-based margin analysis provides a stronger
guarantee of stability than the classical gain and phase margins.

Robust Control Toolbox provides tools to:

• Analyze system stability against gain and phase variations. Use diskmargin to compute the disk-
based gain and phase margins of SISO and MIMO feedback loops.

• Model gain and phase uncertainty. Use the umargin control design block to analyze the effect of
gain and uncertainty on system performance and stability.

Modeling Gain and Phase Variations
Both umargin and diskmargin represent gain and phase variation as a multiplicative complex
factor F(s), replacing the nominal open-loop response L(s) with L(s)*F(s). The factor F takes values in
a disk that includes the nominal value F = 1. This multiplicative factor models both gain and phase
variations. For instance, the following plot shows one such disk in the complex plane.

DGM = [0.6,1.7];
diskmarginplot(DGM,'disk')
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The values in this disk encompass relative gain-only variations in the range DGM = [0.6,1.7], or ±4 dB.
They also represent absolute phase-only variations of DPM = [–29,29], or ±29°. Consider the following
closed-loop system, with nominal loop transfer L and unit feedback.

If this feedback loop remains stable for all values of F in the disk shown in the previous plot, then the
disk-based gain margin of L is at least DGM, and the disk-based phase margin is at least DPM.

Both umargin and diskmargin model gain and phase uncertainty with a family of disks described by
two parameters, α and σ. For SISO systems, the disk is parameterized by:

F = 1 + α 1− σ /2 δ
1− α 1 + σ /2 δ .

In this model,

• δ is the normalized uncertainty (an arbitrary complex value in the unit disk |δ| < 1).
• α sets the amount of gain and phase variation modeled by F. For fixed σ, the parameter α controls

the size of the disk. For α = 0, the multiplicative factor is 1, corresponding to the nominal L.
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• σ, called the skew, biases the modeled uncertainty toward gain increase or gain decrease.

Each α,σ pair corresponds to a disk that models a particular gain-variation range DGM =
[gmin,gmax], given by the points where the disk intercepts the real (x) axis. The corresponding phase
variation DPM is determined by the angle between the real axis and a line through the origin and
tangent to the disk. Thus you can describe a modeled set of gain and phase variations entirely by
either the two values α,σ or the two values DGM = [gmin,gmax]. σ = 0 models a balanced gain
variation with [gmin,gmax] such that gmin = 1/gmax. When σ < 0, then F represents a larger gain
decrease than increase (gmin < 1/gmax). Conversely σ > 0 represents a larger gain increase than
decrease. For instance, consider the disks parameterized by α = 0.5 and three different skews, σ = –
2, 0, and 2.

diskmarginplot(0.5,[-2 0 2],'disk')

Each α,σ pair corresponds to a disk that models a different gain-variation range DGM = [gmin,gmax].
Examine the gain variations that correspond to each of these three disks.

Ranges = dm2gm(0.5,[-2  0 2])

Ranges = 3×2

    0.3333    1.4000
    0.6000    1.6667
    0.7143    3.0000

diskmarginplot(Ranges)
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The balanced σ = 0 range is symmetric around the nominal value, allowing the gain to increase or
decrease by a factor of about 1.67. The negative σ value corresponds to more gain decrease than
increase, while positive σ gives more increase than decrease.

The umargin control design block uses this model to represent gain and phase uncertainty in a
feedback loop, setting α and σ from the gain and phase margin values you specify when you create
the block. The diskmargin command uses this model to compute disk-based gain and phase margins
as discussed in the next section.

Disk Margins for SISO Loops
For a loop transfer L and a given skew σ, the diskmargin command finds the largest disk size α at
which the closed-loop system feedback(L*F,1) is stable for all values of F. This value of α is called
the disk margin. The disk-based gain margin DGM and disk-based phase margin DPM are the range of
gain and phase variations represented by the corresponding disk.

For instance, compute the disk margin and associated disk-based gain and phase margins for a SISO
transfer function, using the default σ = 0.

sigma = 0;
L = tf(25,[1 10 10 10]);
DM = diskmargin(L,sigma);  
alpha = DM.DiskMargin

alpha = 0.4581
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DGM = DM.GainMargin

DGM = 1×2

    0.6273    1.5942

DPM = DM.PhaseMargin

DPM = 1×2

  -25.8017   25.8017

For this system, the balanced (σ = 0) disk margin α is about 0.46. The corresponding disk-based gain
margin DGM shows that the system remains stable for relative variations in gain between about 0.63
and 1.6, or for phase variations of about ±26 degrees. This result establishes stability for all values of
F of in the disk:

diskmarginplot(DGM,'disk')

The gain margins are the intersection of the disk with the real axis. The phase margin is the largest
angle between the real axis and a line through the origin tangent to the disk.

Combined Gain and Phase Variations

The gain margins DGM you obtain from diskmargin assume no phase variation, and the phase
margins DPM assume no gain variation. In practice, your system can experience simultaneous gain
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and phase variations. diskmarginplot lets you visualize the ranges of simultaneous gain and phase
variations that the system can tolerate.

diskmarginplot(DGM)

The shaded region shows the stable range of combined gain and phase variations. Thus, for instance,
with no phase variation, the system can tolerate the full range DGM of gain variation, about –4 dB to 4
dB. If the phase is allowed to vary by ±17 degrees or so, the allowable gain variation drops to a range
of about –3 dB to 3 dB.

Disk Margins and Skew

The ranges shown above, computed for σ = 0, represent a balanced gain variation, where gmin = 1/
gmax. Varying the skew can reveal whether the loop is more sensitive to gain increase or decrease.
For example, using σ > 0 may reveal that the feedback loop is very robust to gain increase, because
positive σ models more gain increase than decrease. This result, however, says little about robustness
to gain decrease. Try computing the disk-based gain and phase margins for L, biasing the margins
toward gain increase or gain decrease.

DMdec = diskmargin(L,-2);
DMinc = diskmargin(L,2); 
DGMdec = DMdec.GainMargin

DGMdec = 1×2

    0.4013    1.3745
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DGMinc = DMinc.GainMargin

DGMinc = 1×2

    0.7717    1.7247

Put together, these results show that in the absence of phase variation, stability is maintained for
relative gain variations between 0.4 and 1.72. To see how the phase margin depends on these gain
variations, plot the stable ranges of gain and phase variations for each diskmargin result.

diskmarginplot([DGMdec;DGM;DGMinc])
legend('\sigma = -2','\sigma = 0','\sigma = 2')
title('Stable range of gain and phase variations')

This plot shows that the feedback loop can tolerate larger phase variations when the gain decreases.
In other words, the loop stability is more sensitive to gain increase. Note that it would be misleading
to just take the largest reported phase margin (nearly 30 degrees for σ = –2). Indeed, this large value
is predicated on a small gain increase of less than 3 dB. Since both gain and phase are subject to
uncertainty in general, it is important to pay attention to combined variations. For example, the plot
shows that when the gain increases by 4 dB, the phase margin drops to less than 15 degrees. By
contrast, it remains greater than 30 degrees when the gain decreases by 4 dB.

In conclusion, varying the skew σ can give a fuller picture of sensitivity to gain and phase uncertainty.
Unless you are mostly concerned with gain variations in one direction (increase or decrease), it is not
recommended to draw conclusions from a single nonzero value of σ. Instead use the default σ = 0 to
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get unbiased estimates of gain and phase margins. When using nonzero values of σ, use both positive
and negative values to compare relative sensitivity to gain increase vs. gain decrease.

Uncertainty Disk in the Nyquist Plane

The requirement of robust stability for the closed-loop system feedback(L*F,1) is equivalent to a
requirement that 1 + L*F ≠ 0. In the Nyquist plane, this requirement becomes L(jω) ≠ –1/F. Thus
the disk F for each value of σ defines an exclusion region that the Nyquist curve does not enter if
closed-loop stability is preserved. All such disks –1/F contain the critical point (–1,0) and are tangent
to the Nyquist curve. The skew adjusts the size and position of the tangent disks, as illustrated in the
following plot, which shows the exclusion regions for the three disk margins of L computed above. As
σ increases, each disk provides lower estimates of the classical gain and phase margins.

nyquist(L)
hold on
diskmarginplot([DGMdec;DGM;DGMinc],'nyquist')
p = findobj(gca,'type','patch');
legend(p,'\sigma = -2','\sigma = 0','\sigma = 2')
hold off
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For more details about the Nyquist interpretation of the uncertainty disk, see “Disk Margin and
Smallest Destabilizing Perturbation” on page 2-14.

MIMO Uncertainty Model and Disk Margins of MIMO Feedback Loops
For MIMO systems, the model applies an independent uncertainty disk Fj to each loop channel, given
by

F j =
1 + α 1− σ /2 δ j
1− α 1 + σ /2 δ j

.

The model replaces the MIMO open-loop response L with L*F, where

F =
F1 0 0
0 ⋱ 0
0 0 FN

.

Analogous to the SISO case, the disk margin is the largest value of α for which the closed-loop system
feedback(L*F,eye(N)) is stable for all values of F. It can be useful to consider independent
variations across all feedback channels at once, as well as variations in individual channels.
Therefore, diskmargin lets you compute:

• Loop-at-a-time margins — Maximum tolerable gain variations (or phase variations) in each
feedback channel, computed with all other loops closed. Loop-at-a-time analysis effectively sets all
δj to 0 for all channels except the channel under analysis.

• Multiloop margins — Maximum tolerable gain variations (or phase variations) across all feedback
channels. Multiloop margins allow for independent variations in all feedback channels at the same
time. The ability to capture such loop interactions is a key advantage of the disk-margin approach
over classical margin analysis. Multiloop analysis typically yield smaller margins than loop-at-a-
time analysis.

For instance, consider the 2-channel MIMO system of the following illustration.

For this system, you can compute:

• Maximum tolerable gain variations (or phase variations) in the first channel (first system input to
first system output)

• Maximum tolerable gain variations (or phase variations) in the second channel (second system
input to second system output)

• Maximum tolerable independent gain variations (or phase variations) in both channels at the same
time.

For details and examples of how to get these loop-at-a-time and multiloop margins, see diskmargin.
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Variations at Plant Input or Plant Output
In some cases, the stability margins can vary depending on whether gain and phase variations are
applied at the plant input or the plant output. diskmargin lets you compute margins for variations
at the input, output, or both simultaneously. In general, the margins for simultaneous input and
output variations are smaller than those for input or output only, and provide a more conservative
guarantee of stability. Consider the SISO or MIMO closed-loop system of the following diagram.

You can compute the disk margins at the plant inputs and outputs as follows.

• [DM,MM] = diskmargin(P*C) returns the margins for variations at the plant outputs.
• [DM,MM] = diskmargin(C*P) returns the margins for variations at the plant inputs.
• MMIO = diskmargin(P,C) returns the margin for simultaneous variations at the plant outputs

and inputs. When comparing this margin to the margins at either the inputs or outputs, use
2*MMIO.Diskmargin, to account for the simultaneous perturbations applied at both inputs and
outputs.

Frequency Dependence of Margins
In general, gain and phase margins vary across frequency. This variation is due to the frequency
variation of the open-loop response L: For each frequency ω, there is a different largest α(ω) such
that I + L(jω)F is invertible for all values of F in the disk. This value is the first α(ω) for which the
closed-loop pole crosses the jω axis at the frequency ω, becoming unstable.

As the disk margin α varies across frequency, so does the corresponding tolerable range of gain or
phase variations. Plotting these disk-based margins as a function of frequency provides information
about frequency bands with weak margins.

L = tf(25,[1 10 10 10]);
diskmarginplot(L)
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The disk margins returned by diskmargin are the minimum such values over all frequencies. Right-
click on the plot generated by diskmarginplot for a data tip with information about these values.

Worst-Case Disk Margins
The disk margin is computed by applying an uncertainty to the nominal loop transfer L and
computing how large that uncertainty can be while preserving closed-loop stability. If the loop
transfer L is itself an uncertain system, then the disk margin also varies as a function of the other
uncertainties in the system. The worst-case disk margin is the smallest disk margin that occurs within
the ranges of the uncertainties modeled in L. It is also the minimum guaranteed margin over the
uncertainty range.

Compute worst-case disk margins of an uncertain system using wcdiskmargin. This function
estimates the worst-case disk margins and corresponding worst-case gain and phase margins for both
loop-at-a-time and multiloop variations. The function also returns the worst-case perturbation, the
combination of uncertain elements in L that yields the weakest margins. You can visualize worst-case
disk-based margins with wcdiskmarginplot.

Disk Margins and Control System Tuning
Tuning With systune or Control System Tuner

The control system tuning tools in Control System Toolbox let you specify target gain and phase
margins for loops in your tuned system. The tuning goals TuningGoal.Margins (for command-line
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tuning with systune) and Margins Goal (for tuning with Control System Tuner) use disk-based
margins. Thus, when you specify independent gain and phase margins GM and PM for tuning, the
software chooses the smallest α that enforces both values. This α is given by:

α = max GM − 1
GM + 1, tan PM/2 .

In applying this value of α, the tuning software assumes σ = 0.

Visualizing margin goals using viewGoal or Control System Tuner tuning-goal plots is equivalent to
diskmarginplot(L), where L is the tuned open-loop response.

Robust Design With musyn

When you perform robust controller tuning with musyn, you can model gain and phase variations
directly in your system using umargin. Then, performing robust controller design with musyn
enforces robust stability for the modeled range of gain and phase variations. This approach is useful
because it allows you to study the effects of the expected gain and phase variations on all aspects of
system performance using the same model you use for tuning. For an example, see “Robust
Controller for Spinning Satellite” on page 3-102.

A disadvantage of this approach is that musyn does not only enforce robust stability over the entire
modeled uncertainty range. It also attempts to enforce robust performance. (See “Robust
Performance Measure for Mu Synthesis” on page 3-11.) Achieving this more stringent requirement
is typically impossible or results in intolerable degradation of nominal performance. Thus, you might
need to reduce the modeled gain and phase variations to maintain reasonable performance. systune
and Control System Tuner do not have this drawback because they handle margin goals
independently of any performance goals.

References
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See Also
diskmargin | diskmarginplot | umargin | wcdiskmargin

More About
• “Disk Margin and Smallest Destabilizing Perturbation” on page 2-14
• “Robustness and Worst-Case Analysis” on page 2-27
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Disk Margin and Smallest Destabilizing Perturbation
This example shows how to interpret the WorstPerturbation field in the structure returned by
diskmargin, the smallest gain and phase variation that results in closed-loop instability.

Disk Margin as Range of Allowable Gain and Phase Variations

Compute the disk margins of a SISO feedback loop with open-loop response L.

L = tf(25,[1 10 10 10]);
DM = diskmargin(L);

The disk-based margins define a range of "safe" gain and phase variations for which the feedback
loop remains stable. The diskmarginplot command lets you visualize this range as a region in the
gain-phase plane. As long as gain and phase variations stay within the shaded region, the closed-loop
system feedback(L,1) remains stable.

diskmarginplot(DM.GainMargin)

diskmargin models gain and phase variations as a complex-valued multiplicative factor F applied to
the nominal loop transfer L. The set of F values is a disk whose intersection with the real axis is the
interval DM.GainMargin. (See “Stability Analysis Using Disk Margins” on page 2-2.)
diskmarginplot can also plot the F disk.

diskmarginplot(DM.GainMargin,'disk')
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diskmargin also computes the smallest variation that destabilizes the feedback loop, returned in the
field DM.WorstPerturbation. This variation is returned as a state-space model that realizes the
destabilizing gain and phase variation. When you multiply L by this perturbation, the resulting closed-
loop system has an undamped pole at the frequency returned in DM.Frequency.

WC = DM.WorstPerturbation;
CL = feedback(L*WC,1);
damp(CL)

                                                                       
         Pole              Damping       Frequency      Time Constant  
                                       (rad/seconds)      (seconds)    
                                                                       
 -1.49e+00 + 7.93e-01i     8.83e-01       1.69e+00         6.70e-01    
 -1.49e+00 - 7.93e-01i     8.83e-01       1.69e+00         6.70e-01    
  1.11e-15 + 1.96e+00i    -5.68e-16       1.96e+00        -9.01e+14    
  1.11e-15 - 1.96e+00i    -5.68e-16       1.96e+00        -9.01e+14    
 -4.19e+00                 1.00e+00       4.19e+00         2.39e-01    
 -9.46e+00                 1.00e+00       9.46e+00         1.06e-01    

Verify that the gain and phase variation of the destabilizing perturbation mark a boundary point for
the range of "safe" gain and phase variations. To do so, compute the gain and phase of WC at
DM.Frequency.

hWC = freqresp(WC,DM.Frequency);

GM = mag2db(abs(hWC))
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GM = 1.7832

PM = 180/pi * abs(angle(hWC))

PM = 23.1695

diskmarginplot(DM.GainMargin)
line(GM,PM,'Color','k','Marker','+','MarkerSize',8,'LineWidth',3,'HandleVisibility','off')
text(GM+.1,PM+1,sprintf('Gain and phase of WC\n      at f = %.5g',DM.Frequency))

Nyquist Interpretation

The statement that the perturbation WC drives the closed-loop system unstable is equivalent to saying
that the Nyquist plot of L*WC touches the critical point at the frequency DM.Frequency. (See
“Stability Analysis Using Disk Margins” on page 2-2.) The following plot shows the Nyquist plots of L
and L*WC. The crosses on each plot mark the response at DM.Frequency, and confirm that the
response of L*WC is –1 at this frequency.

figure(2), clf
hL = freqresp(L,DM.Frequency);
nyquist(L,L*WC), title('Open-loop response')
legend('L','L*WC')
axis([-2 2 -2 2])
line(-1,0,'Color','r','Marker','+','MarkerSize',8,...
          'LineWidth',3,'HandleVisibility','off')
line(real(hL),imag(hL),'Color','k','Marker','+',...
          'MarkerSize',8,'LineWidth',3,'HandleVisibility','off')
text(real(hL)+0.05,imag(hL)-0.2,sprintf('f = %.5g',DM.Frequency))
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line([real(hL) -1],[imag(hL) 0],'Color','k','LineStyle',':',...
          'LineWidth',2,'HandleVisibility','off')

The perturbation WC is dynamic and its Nyquist plot hugs the boundary of the disk of F values. The
point of contact is the frequency DM.Frequency where the disk margin is weakest. The following
plot uses diskmarginplot to render the disk of allowable gain and phase variations on the Nyquist
plane, superimposing the response of the perturbation WC. The black cross again marks the response
at DM.Frequency.

hWC = freqresp(WC,DM.Frequency);

diskmarginplot(DM.GainMargin,'disk')
hold on
nyquist(WC)
hold off
axis([0.6 1.6 -0.6 0.6])
line(real(hWC),imag(hWC),'Color','k','Marker','+',...
   'MarkerSize',8,'LineWidth',3,'HandleVisibility','off')
text(real(hWC)+0.02,imag(hWC)-0.05,sprintf('f = %.5g',DM.Frequency))
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Equivalently, this frequency is where the Nyquist plot of L touches the exclusion region associated
with the disk margins DM. The following plot shows the disk of variations with the Nyquist plot of L.
The black cross marks the response of L at DM.Frequency.

diskmarginplot(DM.GainMargin,'nyquist')
hold on
nyquist(L)
hold off
axis([-2 0 -1 1])
line(real(hL),-imag(hL),'Color','k','Marker','+',...
        'MarkerSize',8,'LineWidth',3,'HandleVisibility','off')
text(real(hL)+0.05,-imag(hL)+0.05,sprintf('f = %.5g',DM.Frequency))
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Thus, the disk F represents a region in the Nyquist plane that the response of L cannot enter while
preserving closed-loop stability. At the critical frequency DM.Frequency, the frequency at which the
gain and phase margins are smallest, the Nyquist plot of L just touches the disk.

See Also
diskmargin | diskmarginplot | wcdiskmargin

More About
• “Stability Analysis Using Disk Margins” on page 2-2
• “Robust MIMO Controller for Two-Loop Autopilot” on page 3-89
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MIMO Stability Margins for Spinning Satellite
This example shows that in MIMO feedback loops, disk margins are more reliable stability margin
estimates than the classical, loop-at-a-time gain and phase margins. It first appeared in Reference [1].

Spinning Satellite

This example is motivated by controlling the transversal angular rates in a spinning satellite (see
Reference [2]). The cylindrical body spins around its axis of symmetry (z axis) with constant angular
rate Ω. The goal is to independently control the angular rates ωx and ωy around the x and y axes
using torques ux and uy. The equations of motion lead to the second-order, two-input, two-output
model:

ω̇x

ω̇y
=

0 a
−a 0

ωx
ωy

+
ux
uy

ν1
ν2

=
1 a
−a 1

ωx
ωy

, a = 10 .

Consider a static control law that combines feedforward and unit-feedback actions:

u = Kfr − ν.

Setting the feedforward gain as follows achieves perfect decoupling and makes each loop respond as
a first-order system with unit time constant.

Kf = 1
1 + a2

1 −a
a 1

The resulting system is the two-loop control system of the following diagram.

Create a state-space model of the satellite and the controller to see the performance of the system
with this controller.

% Plant
a = 10;
A = [0 a;-a 0];
B = eye(2);
C = [1 a;-a 1];
D = 0;
P = ss(A,B,C,D);

% Prefilter
Kf = [1 -a;a 1]/(1+a^2);

% Closed-loop model
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T = feedback(P,eye(2))*Kf;
step(T,10)

Loop-at-a-Time Gain and Phase Margins

The classical gain and phase margins are a customary way to gauge the robustness of SISO feedback
loops to plant uncertainty. In MIMO control systems, the gain and phase margins are often assessed
one loop at a time, meaning that the margins are computed independently for each feedback channel
with the other loops closed. Robustness is clearly in doubt when one loop is found to have weak
margins. Unfortunately, the converse is not true. Each individual loop can have strong gain and phase
margins while overall robustness is weak. This is because the loop-at-a-time approach fails to account
for loop interactions and conditioning of the MIMO loop transfer. The spinning satellite example is a
perfect illustration of this point.

To compute the loop-at-a-time gain and phase margins, introduce an analysis point at the plant input
to facilitate access to the open-loop responses.

uAP = AnalysisPoint('u',2);
T = feedback(P*uAP,eye(2))*Kf;

Use getLoopTransfer to access the SISO loop transfers at ux with the y loop closed, and at uy with
the x loop closed.

Lx = getLoopTransfer(T,'u(1)',-1);
Ly = getLoopTransfer(T,'u(2)',-1);

Finally, use margin to compute the loop-at-a-time classical gain and phase margins.
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[gmx,pmx] = margin(Lx)

gmx = Inf

pmx = 90

[gmy,pmy] = margin(Ly)

gmy = Inf

pmy = 90

margin reports a gain margin of Inf and phase margin of 90°, as stable against variations in gain
and phase as a SISO loop can be. This result is not surprising given that the loop transfers Lx and Ly
are pure integrators.

tf(Lx), tf(Ly)

ans =
 
  From input "u(1)" to output "u(1)":
  1
  -
  s
 
Continuous-time transfer function.

ans =
 
  From input "u(2)" to output "u(2)":
  1
  -
  s
 
Continuous-time transfer function.

Despite this loop-at-a-time result, the MIMO feedback loop T can be destabilized by a 10% gain
change affecting both loops. To demonstrate this destabilization, multiply the plant by a static gain
that decreases the gain by 10% in the ux channel and increases it by 10% in the uy channel. Then
compute the poles of the unit feedback loop to see that one of them has moved into the right half-
plane, driving the loop unstable.

dg = diag([1-0.1,1+0.1]);  
pole(feedback(P*dg,eye(2)))

ans = 2×1

   -2.0050
    0.0050

Because model uncertainty typically affects all feedback loops, the loop-at-a-time margins tend to
overestimate actual robustness and can miss important issues with MIMO designs.

Disk Margins

The notion of disk margin gives a more comprehensive assessment of robustness in MIMO feedback
loops by explicitly modeling and accounting for loop interactions. See “Stability Analysis Using Disk
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Margins” on page 2-2 for additional background information. To compute the SISO and MIMO disk
margins for the spinning satellite example, extract the MIMO loop transfer L and use the
diskmargin command.

L = getLoopTransfer(T,'u',-1);
[DM,MM] = diskmargin(L);

The first output DM contains the loop-at-a-time disk-based margins. These are lower estimates of the
classical gain and phase margins. For this model, the disk-based margins also report a gain margin of
Inf and phase margin of 90° for each individual loop. So far nothing new.

DM(1)

ans = struct with fields:
           GainMargin: [0 Inf]
          PhaseMargin: [-90 90]
           DiskMargin: 2
           LowerBound: 2
           UpperBound: 2
            Frequency: 0
    WorstPerturbation: [2x2 ss]

DM(2)

ans = struct with fields:
           GainMargin: [0 Inf]
          PhaseMargin: [-90 90]
           DiskMargin: 2
           LowerBound: 2
           UpperBound: 2
            Frequency: 0
    WorstPerturbation: [2x2 ss]

The second output MM contains the MIMO disk-based margins.

MM

MM = struct with fields:
           GainMargin: [0.9051 1.1049]
          PhaseMargin: [-5.7060 5.7060]
           DiskMargin: 0.0997
           LowerBound: 0.0997
           UpperBound: 0.0999
            Frequency: 1.0000e-04
    WorstPerturbation: [2x2 ss]

This multiloop disk-based margin is the most reliable measure of MIMO robustness since it accounts
for independent gain and phase variations in all loop channels at the same time. Here MM reports a
gain margin of [0.905,1.105], meaning that the open-loop gain can increase or decrease by a factor of
1.105 while preserving closed-loop stability. The phase margin is 5.7°. This result is in line with the
destabilizing perturbation dg above which corresponds to a relative gain change in the range
[0.90,1.10].

The diskmarginplot command lets you visualize the disk-based margins as a function of frequency.
For this system, that the disk-based margins are weakest near DC (zero frequency).
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clf
diskmarginplot(L)
grid

The struct MM also contains the smallest destabilizing perturbation MM.WorstPerturbation. This
dynamic perturbation is a realization of the smallest destabilizing change in gain and phase. Note
that this perturbation modifies both gain and phase in both feedback channels.

WGP = MM.WorstPerturbation;
pole(feedback(P*WGP,eye(2)))

ans = 8×1 complex

  -1.0000 + 0.0001i
  -1.0000 - 0.0001i
  -0.0002 + 0.0002i
  -0.0002 - 0.0002i
   0.0000 + 0.0001i
   0.0000 - 0.0001i
  -0.0000 + 0.0000i
  -0.0000 - 0.0000i

Compare the dynamic perturbation WGP with the static gain dg used above to destabilize the system.

bode(ss(dg),WGP), grid
title('Smallest destabilizing perturbation')
legend('dg','smallest')
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Conclusion

For multi-loop control systems, disk margins are a more reliable robust stability test than loop-at-a-
time gain and phase margins. The diskmargin function computes both loop-at-a-time and MIMO
disk margins and the corresponding smallest destabilizing perturbations. You can use these
perturbations for further analysis and risk assessment, for example, by injecting them in a detailed
nonlinear simulation of the system.

To learn how to design a controller with adequate stability margins for this plant, see the example
“Robust Controller for Spinning Satellite” on page 3-102.
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See Also
diskmargin | diskmarginplot
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More About
• “Stability Analysis Using Disk Margins” on page 2-2
• “Robust Controller for Spinning Satellite” on page 3-102
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Robustness and Worst-Case Analysis
In robust control design, performance is expressed and measured in terms of the peak gain (the H∞
norm or peak singular value) of a system. The smaller this gain is, the better the system performance.
The performance of a nominally stable uncertain system generally degrades as the amount of
uncertainty increases. Use robustness analysis and worst-case analysis to examine how the amount of
uncertainty in your system affects the stability and peak gain of the system.

Robustness Analysis
Robustness analysis is about finding the maximum amount of uncertainty compatible with stability or
with a given performance level. The following illustration shows a typical trade-off curve between
performance and robustness. Here, the peak gain (peak magnitude on a Bode plot or singular-value
plot) characterizes the system performance.

The x-axis quantifies the normalized amount of uncertainty. The value x = 1 corresponds to the
uncertainty ranges specified in the model. x = 2 represents the system with twice as much
uncertainty. x = 0 corresponds to the nominal system. (See actual2normalized for more details
about normalized uncertainty ranges.) The y-axis is performance, measured as the peak gain of some
closed-loop transfer function. For instance, if the closed-loop transfer function measures the
sensitivity of an error signal to some disturbance, then higher peak gain corresponds to poorer
disturbance rejection.

When all uncertain elements are set to their nominal values (x = 0), the gain of the system is its
nominal value. In the figure, the nominal system gain is about 1. As the range of values that the
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uncertain elements can take increases, the peak gain over the uncertainty range increases. The heavy
blue line represents the peak gain, and is called the system performance degradation curve. It
increases monotonically as a function of the uncertainty amount.

Robust Stability Margin

The system performance degradation curve typically has a vertical asymptote corresponding to the
robust stability margin. This margin is the maximum amount of uncertainty that the system can
tolerate while remaining stable. For the system of the previous illustration, the peak gain becomes
infinite at around x = 2.3. In other words, the system becomes unstable when the uncertainty range
is 2.3 times that specified in the model (in normalized units). Therefore, the robust stability margin is
2.3. To compute the robust stability margin for an uncertain system model, use the robstab function.

Robust Performance Margin

The robust performance margin for a given gain, γ, is the maximum amount of uncertainty the system
can tolerate while having a peak gain less than γ. For example, in the following illustration, suppose
that you want to keep the peak closed-loop gain below 1.8. For that peak gain, the robust
performance margin is about 1.7. This value means that the peak gain of the system remains below
1.8 as long as the uncertainty remains within 1.7 times the specified uncertainty (in normalized
units).

To compute the robust performance margin for an uncertain system model, use the robgain
function.
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Worst-Case Gain Measure
The worst-case gain is the largest value that the peak gain can take over a specific uncertainty range.
This value is the counterpart of the robust performance margin. While the robust performance
margin measures the maximum amount of uncertainty compatible with a particular peak gain level,
the worst-case gain measures the maximum gain associated with a particular uncertainty amount. For
instance, in the following illustration, the worst-case gain for the uncertainty amount specified in the
model is about 1.20. If that uncertainty amount is doubled, the worst-case gain increases to 2.5.

To compute the worst-case gain for an uncertain system model, use the wcgain function. The ULevel
option of the wcOptions command lets you compute the worst-case gain for different amounts of
uncertainty.

See Also
robgain | robstab | wcgain

Related Examples
• “Robust Stability and Worst-Case Gain of Uncertain System”
• “Worst-Case Sensitivity and Complementary Sensitivity” on page 2-30
• “MIMO Robustness Analysis”
• “Stability Analysis Using Disk Margins” on page 2-2
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Worst-Case Sensitivity Functions of Feedback Loops
The sensitivity function and the complementary sensitivity function are two transfer functions related
to the robustness and performance of a closed-loop system. Consider a general multivariable closed-
loop control structure, as in the following illustration.

The following table gives the values of the input and output sensitivity functions for this control
structure.

Description Equation
Input sensitivity Si (closed-loop transfer function from d1 to e1) Si = (I + CP)–1

Input complementary sensitivity Ti (closed-loop transfer function
from d1 to e2)

Ti = CP(I + CP)–1

Output sensitivity So (closed-loop transfer function from d2 to e2) So = (I + PC)–1

Output complementary sensitivity To (closed-loop transfer function
from d2 to e4)

To = PC(I + PC)–1

Input loop transfer function Li Li = CP
Output loop transfer function Lo Lo = PC

Worst-Case Sensitivity and Complementary Sensitivity
When you have an uncertain plant model and a controller model, you can compute the worst-case
sensitivity and complementary sensitivity functions for robustness analysis. To do so, construct the
transfer function you want to evaluate and use wcgain to find the perturbations that yield the worst-
case gain for that transfer function. Then, use usubs to compute the transfer function corresponding
to that worst-case gain.

For this example, create a SISO uncertain plant P and a PID controller.

delta = ultidyn('delta',[1 1]);
tau = ureal('tau',5,'range',[4 6]);
P = tf(1,[tau 1])*(1+0.25*delta);
C = pid(4,4);

Construct the uncertain sensitivity and complementary sensitivity transfer functions, Si = I + CP −1

and Ti = I − Si, respectively. (For this SISO system, the input and output sensitivity functions are
equal.)
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Si = feedback(1,C*P);
Ti = 1 - Si;

Compute the worst-case peak gains of Si and Ti and the corresponding worst-case perturbations
using wcgain.

[wcgS,wcuS] = wcgain(Si);
[wcgT,wcuT] = wcgain(Ti);

Finally, evaluate the sensitivity functions with these worst-case perturbations.

Siwc = usubs(Si,wcuS);
Tiwc = usubs(Ti,wcuT);

Siwc and Tiwc are the worst-case sensitivity and complementary sensitivity functions for the
uncertainty specified in the plant. Examine the effect of uncertainty on the sensitivity function Si by
plotting the frequency response of some samples. The actual worst-case peak gain wcgS can be
significantly higher than the random samples show.

rng(0); % for reproducibility
sigma(Si,Siwc)

See Also
wcgain
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More About
• “Robustness and Worst-Case Analysis” on page 2-27

2 Generalized Robustness Analysis

2-32



Robust Stability, Robust Performance and Mu Analysis
This example shows how to use Robust Control Toolbox™ to analyze and quantify the robustness of
feedback control systems. It also provides insight into the connection with mu analysis and the mussv
function.

System Description

Figure 1 shows the block diagram of a closed-loop system. The plant model P is uncertain and the
plant output y must be regulated to remain small in the presence of disturbances d and measurement
noise n.

Figure 1: Closed-loop system for robustness analysis

Disturbance rejection and noise insensitivity are quantified by the performance objective

P(1 + KP)−1Wd, (1 + PK)−1Wn ∞

where Wd and Wn are weighting functions reflecting the frequency content of d and n. Here Wd is
large at low frequencies and Wn is large at high frequencies.

Wd = makeweight(100,.4,.15);
Wn = makeweight(0.5,20,100);
bodemag(Wd,'b--',Wn,'g--')
title('Performance Weighting Functions')
legend('Input disturbance','Measurement noise')
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Creating an Uncertain Plant Model

The uncertain plant model P is a lightly-damped, second-order system with parametric uncertainty in
the denominator coefficients and significant frequency-dependent unmodeled dynamics beyond 6
rad/s. The mathematical model looks like:

P(s) = 16
s2 + 0 . 16s + k

(1 + Wu(s)δ(s))

The parameter k is assumed to be about 40% uncertain, with a nominal value of 16. The frequency-
dependent uncertainty at the plant input is assumed to be about 30% at low frequency, rising to 100%
at 10 rad/s, and larger beyond that. Construct the uncertain plant model P by creating and combining
the uncertain elements:

k = ureal('k',16,'Percentage',30);
delta = ultidyn('delta',[1 1],'SampleStateDim',4);
Wu = makeweight(0.3,10,20);
P = tf(16,[1 0.16 k]) * (1+Wu*delta);

Designing a Controller

We use the controller designed in the example "Improving Stability While Preserving Open-Loop
Characteristics". The plant model used there happens to be the nominal value of the uncertain plant
model created above. For completeness, we repeat the commands used to generate the controller.

K_PI = pid(1,0.8);
K_rolloff = tf(1,[1/20 1]);
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Kprop = K_PI*K_rolloff;
[negK,~,Gamma] = ncfsyn(P.NominalValue,-Kprop);
K = -negK;

Closing the Loop

Use connect to build an uncertain model of the closed-loop system of Figure 1. Name the signals
coming in and out of each block and let connect do the wiring:

P.u = 'uP';  P.y = 'yP';
K.u = 'uK';  K.y = 'yK';
S1 = sumblk('uP = yK + D');
S2 = sumblk('uK = -yP - N');
Wn.u = 'n'; Wn.y = 'N';
Wd.u = 'd'; Wd.y = 'D';
ClosedLoop = connect(P,K,S1,S2,Wn,Wd,{'d','n'},'yP');

The variable ClosedLoop is an uncertain system with two inputs and one output. It depends on two
uncertain elements: a real parameter k and an uncertain linear, time-invariant dynamic element
delta.

ClosedLoop

ClosedLoop =

  Uncertain continuous-time state-space model with 1 outputs, 2 inputs, 11 states.
  The model uncertainty consists of the following blocks:
    delta: Uncertain 1x1 LTI, peak gain = 1, 1 occurrences
    k: Uncertain real, nominal = 16, variability = [-30,30]%, 1 occurrences

Type "ClosedLoop.NominalValue" to see the nominal value, "get(ClosedLoop)" to see all properties, and "ClosedLoop.Uncertainty" to interact with the uncertain elements.

Robust Stability Analysis

The classical margins from allmargin indicate good stability robustness to unstructured gain/phase
variations within the loop.

allmargin(P.NominalValue*K)

ans = struct with fields:
     GainMargin: [6.5374e-15 6.3267 11.1183]
    GMFrequency: [0 1.6110 15.1526]
    PhaseMargin: [80.0229 -99.6598 63.7949]
    PMFrequency: [0.4471 3.1461 5.2318]
    DelayMargin: [3.1238 1.4443 0.2128]
    DMFrequency: [0.4471 3.1461 5.2318]
         Stable: 1

Does the closed-loop system remain stable for all values of k, delta in the ranges specified above?
Answering this question requires a more sophisticated analysis using the robstab function.

[stabmarg,wcu] = robstab(ClosedLoop);
stabmarg

stabmarg = struct with fields:
           LowerBound: 1.4679
           UpperBound: 1.4709
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    CriticalFrequency: 5.8929

The variable stabmarg gives upper and lower bounds on the robust stability margin, a measure of
how much uncertainty on k, delta the feedback loop can tolerate before becoming unstable. For
example, a margin of 0.8 indicates that as little as 80% of the specified uncertainty level can lead to
instability. Here the margin is about 1.5, which means that the closed loop will remain stable for up to
150% of the specified uncertainty.

The variable wcu contains the combination of k and delta closest to their nominal values that causes
instability.

wcu

wcu = struct with fields:
    delta: [1x1 ss]
        k: 23.0601

We can substitute these values into ClosedLoop and verify that these values cause the closed-loop
system to be unstable.

format short e
pole(usubs(ClosedLoop,wcu))

Note that the natural frequency of the unstable closed-loop pole is given by
stabmarg.CriticalFrequency:

stabmarg.CriticalFrequency

ans = 
   5.8929e+00

Connection with Mu Analysis

The structured singular value, or μ, is the mathematical tool used by robstab to compute the robust
stability margin. If you are comfortable with structured singular value analysis, you can use the
mussv function directly to compute mu as a function of frequency and reproduce the results above.
The function mussv is the underlying engine for all robustness analysis commands.

To use mussv, we first extract the (M,Delta) decomposition of the uncertain closed-loop model
ClosedLoop, where Delta is a block-diagonal matrix of (normalized) uncertain elements. The 3rd
output argument of lftdata, BlkStruct, describes the block-diagonal structure of Delta and can
be used directly by mussv

[M,Delta,BlkStruct] = lftdata(ClosedLoop);

For robust stability analysis, only the channels of M associated with the uncertainty channels are
used. Based on the row/column size of Delta, select the proper columns and rows of M. Remember
that the rows of Delta correspond to the columns of M, and vice versa. Consequently, the column
dimension of Delta is used to specify the rows of M:

szDelta = size(Delta);
M11 = M(1:szDelta(2),1:szDelta(1));
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In its simplest form, mu-analysis is performed on a finite grid of frequencies. Pick a vector of
logarithmically-spaced frequency points and evaluate the frequency response of M11 over this
frequency grid.

omega = logspace(-1,2,50);
M11_g = frd(M11,omega);

Compute mu(M11) at these frequencies and plot the resulting lower and upper bounds:

mubnds = mussv(M11_g,BlkStruct,'s');

LinMagopt = bodeoptions;
LinMagopt.PhaseVisible = 'off'; LinMagopt.XLim = [1e-1 1e2]; LinMagopt.MagUnits = 'abs';
bodeplot(mubnds(1,1),mubnds(1,2),LinMagopt);
xlabel('Frequency (rad/sec)');
ylabel('Mu upper/lower bounds');
title('Mu plot of robust stability margins (inverted scale)');

Figure 3: Mu plot of robust stability margins (inverted scale)

The robust stability margin is the reciprocal of the structured singular value. Therefore upper bounds
from mussv become lower bounds on the stability margin. Make these conversions and find the
destabilizing frequency where the mu upper bound peaks (that is, where the stability margin is
smallest):

[pkl,wPeakLow] = getPeakGain(mubnds(1,2));
[pku] = getPeakGain(mubnds(1,1));

 Robust Stability, Robust Performance and Mu Analysis

2-37



SMfromMU.LowerBound = 1/pku;
SMfromMU.UpperBound = 1/pkl;
SMfromMU.CriticalFrequency = wPeakLow;

Compare SMfromMU to the bounds stabmarg computed with robstab. The values are in rough
agreement with robstab yielding slightly weaker margins. This is because robstab uses a more
sophisticated approach than frequency gridding and can accurately compute the peak value of mu
across frequency.

stabmarg

stabmarg = struct with fields:
           LowerBound: 1.4679e+00
           UpperBound: 1.4709e+00
    CriticalFrequency: 5.8929e+00

SMfromMU

SMfromMU = struct with fields:
           LowerBound: 1.4747e+00
           UpperBound: 1.4747e+00
    CriticalFrequency: 5.9636e+00

Robust Performance Analysis

For the nominal values of the uncertain elements k and delta, the closed-loop gain is less than 1:

getPeakGain(ClosedLoop.NominalValue)

ans = 
   9.8050e-01

This says that the controller K meets the disturbance rejection and noise insensitivity goals. But is
this nominal performance maintained in the face of the modeled uncertainty? This question is best
answered with robgain.

opt = robOptions('Display','on');
[perfmarg,wcu] = robgain(ClosedLoop,1,opt);

Computing peak...  Percent completed: 100/100
The performance level 1 is not robust to the modeled uncertainty.
 -- The gain remains below 1 for up to 39.7% of the modeled uncertainty.
 -- There is a bad perturbation amounting to 39.8% of the modeled uncertainty.
 -- This perturbation causes a gain of 1 at the frequency 0.129 rad/seconds.

The answer is negative: robgain found a perturbation amounting to only 40% of the specified
uncertainty that drives the closed-loop gain to 1.

getPeakGain(usubs(ClosedLoop,wcu),1e-6)

ans = 
   1.0000e+00

This suggests that the closed-loop gain will exceed 1 for 100% of the specified uncertainty. This is
confirmed by computing the worst-case gain:
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wcg = wcgain(ClosedLoop)

wcg = struct with fields:
           LowerBound: 1.5719e+00
           UpperBound: 1.5750e+00
    CriticalFrequency: 5.9570e+00

The worst-case gain is about 1.6. This analysis shows that while the controller K meets the
disturbance rejection and noise insensitivity goals for the nominal plant, it is unable to maintain this
level of performance for the specified level of plant uncertainty.

See Also
mussv | robgain | robstab | wcgain

Related Examples
• “Getting Reliable Estimates of Robustness Margins” on page 2-51

More About
• “Robustness and Worst-Case Analysis” on page 2-27
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Robustness of Servo Controller for DC Motor
This example shows how to use uncertain objects in Robust Control Toolbox™ to model uncertain
systems and assess robust stability and robust performance using the robustness analysis tools.

Data Structures for Uncertainty Modeling

Robust Control Toolbox lets you create uncertain elements, such as physical parameters whose values
are not known exactly, and combine these elements into uncertain models. You can then easily
analyze the impact of uncertainty on the control system performance.

For example, consider a plant model

P(s) = γ
τs + 1

where gamma can range in the interval [3,5] and tau has average value 0.5 with 30% variability. You
can create an uncertain model of P(s) as in this example:

gamma = ureal('gamma',4,'range',[3 5]);
tau = ureal('tau',.5,'Percentage',30);
P = tf(gamma,[tau 1])

P =

  Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 1 states.
  The model uncertainty consists of the following blocks:
    gamma: Uncertain real, nominal = 4, range = [3,5], 1 occurrences
    tau: Uncertain real, nominal = 0.5, variability = [-30,30]%, 1 occurrences

Type "P.NominalValue" to see the nominal value, "get(P)" to see all properties, and "P.Uncertainty" to interact with the uncertain elements.

Suppose you have designed an integral controller C for the nominal plant (gamma=4 and tau=0.5). To
find out how variations of gamma and tau affect the plant and the closed-loop performance, form the
closed-loop system CLP from C and P.

KI = 1/(2*tau.Nominal*gamma.Nominal);
C = tf(KI,[1 0]);
CLP = feedback(P*C,1)

CLP =

  Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 2 states.
  The model uncertainty consists of the following blocks:
    gamma: Uncertain real, nominal = 4, range = [3,5], 1 occurrences
    tau: Uncertain real, nominal = 0.5, variability = [-30,30]%, 1 occurrences

Type "CLP.NominalValue" to see the nominal value, "get(CLP)" to see all properties, and "CLP.Uncertainty" to interact with the uncertain elements.

Plot the step response of the plant and closed-loop system. The step command automatically
generates 20 random samples of the uncertain parameters gamma and tau and plots the
corresponding step responses.

subplot(2,1,1); step(P), title('Plant response (20 samples)')
subplot(2,1,2); step(CLP), title('Closed-loop response (20 samples)')
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Figure 1: Step responses of the plant and closed-loop models

The bottom plot shows that the closed-loop system is reasonably robust despite significant
fluctuations in the plant DC gain. This is a desirable and common characteristic of a properly
designed feedback system.

DC Motor Example with Parameter Uncertainty and Unmodeled Dynamics

This example builds on the example “Reference Tracking of DC Motor with Parameter Variations” by
adding parameter uncertainty and unmodeled dynamics, to investigate the robustness of the servo
controller to such uncertainty.

The nominal model of the DC motor is defined by the resistance R, the inductance L, the emf constant
Kb, armature constant Km, the linear approximation of viscous friction Kf and the inertial load J. Each
of these components varies within a specific range of values. The resistance and inductance constants
range within ±40% of their nominal values. Use ureal to construct these uncertain parameters.

R = ureal('R',2,'Percentage',40);
L = ureal('L',0.5,'Percentage',40);

For physical reasons, the values of Kf and Kb are the same, even if they are uncertain. In this
example, the nominal value is 0.015 with a range between 0.012 and 0.019.

K = ureal('K',0.015,'Range',[0.012 0.019]);
Km = K;
Kb = K;
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Viscous friction, Kf, has a nominal value of 0.2 with a 50% variation in its value.

Kf = ureal('Kf',0.2,'Percentage',50);

Electrical and Mechanical Equations

The current in the electrical circuit, and the torque applied to the rotor can be expressed in terms of
the applied voltage and the angular speed. Create the transfer function H relating these variables,
and make AngularSpeed an output of H for later use.

H = [1;0;Km] * tf(1,[L R]) * [1 -Kb] + [0 0;0 1;0 -Kf];
H.InputName = {'AppliedVoltage';'AngularSpeed'};
H.OutputName = {'Current';'AngularSpeed';'RotorTorque'};

The motor typically drives an inertia, whose dynamic characteristics relate the applied torque to the
rate-of-change of the angular speed. For a rigid body, this value is a constant. A more realistic, but
uncertain, model might contain unknown damped resonances. Use the ultidyn object to model
uncertain linear time-invariant dynamics. Set the nominal value of the rigid body inertia to 0.02 and
we include 15% dynamic uncertainty in multiplicative form.

J = 0.02*(1 + ultidyn('Jlti',[1 1],'Type','GainBounded','Bound',0.15,...
   'SampleStateDim',4));

Uncertain Model of DC Motor

It is a simple matter to relate the AngularSpeed input to the RotorTorque output through the
uncertain inertia, J, using the lft command. The AngularSpeed input equals RotorTorque/
(J*s). Therefore, use "positive" feedback from the third output to the second input of H to make the
connection. This connection results in a system with one input (AppliedVoltage) and two outputs
(Current and AngularSpeed).

Pall = lft(H,tf(1,[1 0])/J);

Select only the AngularSpeed output for the remainder of the control analysis.

P = Pall(2,:)

P =

  Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 2 states.
  The model uncertainty consists of the following blocks:
    Jlti: Uncertain 1x1 LTI, peak gain = 0.15, 1 occurrences
    K: Uncertain real, nominal = 0.015, range = [0.012,0.019], 2 occurrences
    Kf: Uncertain real, nominal = 0.2, variability = [-50,50]%, 1 occurrences
    L: Uncertain real, nominal = 0.5, variability = [-40,40]%, 1 occurrences
    R: Uncertain real, nominal = 2, variability = [-40,40]%, 1 occurrences

Type "P.NominalValue" to see the nominal value, "get(P)" to see all properties, and "P.Uncertainty" to interact with the uncertain elements.

P is a single-input, single-output uncertain model of the DC motor. For analysis purposes, use the
following controller.

Cont = tf(84*[.233 1],[.0357 1 0]);

Open-Loop Analysis

First, compare the step response of the nominal DC motor with 15 samples of the uncertain model of
the DC motor. Use usample to explicitly specify the number of random samples.

2 Generalized Robustness Analysis

2-42



clf
step(usample(P,15),P.NominalValue,3)
legend('Samples','Nominal')

Figure 2: Plant step response

Similarly, compare the Bode response of the nominal (red) and sampled (blue) uncertain models of
the DC motor.

bode(usample(P,15),P.NominalValue);
legend('Samples','Nominal')
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Figure 3: Plant Bode response

Robustness Analysis

In this section, analyze the robustness of the DC motor controller. A nominal analysis of the closed-
loop system indicates the feedback loop is very robust with 22 dB gain margin and 66 deg of phase
margin.

margin(P.NominalValue*Cont)

2 Generalized Robustness Analysis

2-44



Figure 4: Closed-loop robustness analysis

The diskmargin function computes the disk-based gain and phase margins. By modeling gain and
phase variations at all frequencies and in all feedback loops, disk margins tend to be more accurate
estimates of robustness, especially in multi-loop control systems. Compute the disk-based margins for
the DC motor loop.

DM = diskmargin(P.NominalValue*Cont)

DM = struct with fields:
           GainMargin: [0.2792 3.5822]
          PhaseMargin: [-58.8054 58.8054]
           DiskMargin: 1.1271
           LowerBound: 1.1271
           UpperBound: 1.1271
            Frequency: 5.0062
    WorstPerturbation: [1x1 ss]

While smaller than the classical gain and phase margins, the disk-based margins essentially confirm
that the nominal feedback loop is very robust. Now, recall that the DC motor plant is uncertain. How
does the modeled uncertainty affect these stability margins? For quick insight, plot the disk-based
gain and phase margins for 20 samples of the uncertain open-loop response.

diskmarginplot(P*Cont,P.NominalValue*Cont)
legend('Samples','Nominal')
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Some combinations of plant uncertainty lead to smaller margins. The plot shows only a small sample.
Use worst-case analysis to find out how bad the margins can really get. The wcdiskmargin function
directly computes the worst-case gain and phase margins for the modeled uncertainty.

wcDM = wcdiskmargin(P*Cont,'siso')

wcDM = struct with fields:
           GainMargin: [0.8728 1.1457]
          PhaseMargin: [-7.7680 7.7680]
           DiskMargin: 0.1358
           LowerBound: 0.1358
           UpperBound: 0.1361
    CriticalFrequency: 4.9846
    WorstPerturbation: [1x1 ss]

mag2db(wcDM.GainMargin)

ans = 1×2

   -1.1812    1.1812

Here the worst-case margins are only 1.2 dB and 7.8 degrees, signaling that the closed loop is nearly
unstable for some combinations of the uncertain elements.
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Robustness of Disturbance Rejection Characteristics

The sensitivity function is a standard measure of closed-loop performance for the feedback system.
Compute the uncertain sensitivity function S and compare the Bode magnitude plots for the nominal
and sampled uncertain sensitivity functions.

S = feedback(1,P*Cont);
bodemag(S,S.Nominal)
legend('Samples','Nominal')

Figure 5: Magnitude of sensitivity function S.

In the time domain, the sensitivity function indicates how well a step disturbance can be rejected.
Plot its step response to see the variability in disturbance rejection characteristics (nominal appears
in red).

step(S,S.Nominal)
title('Disturbance Rejection')
legend('Samples','Nominal')
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Figure 6: Rejection of a step disturbance.

Use the wcgain function to compute the worst-case value of the peak gain of the sensitivity function.

[maxgain,worstuncertainty] = wcgain(S);
maxgain

maxgain = struct with fields:
           LowerBound: 7.5196
           UpperBound: 7.5355
    CriticalFrequency: 4.9974

With the usubs function you can substitute the worst-case values of the uncertain elements into the
uncertain sensitivity function S. This gives the worst-case sensitivity function Sworst over the entire
uncertainty range. Note that the peak gain of Sworst matches the lower-bound computed by
wcgain.

Sworst = usubs(S,worstuncertainty);
norm(Sworst,inf)

ans = 7.5196

maxgain.LowerBound

ans = 7.5196

Now compare the step responses of the nominal and worst-case sensitivity.
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step(Sworst,S.NominalValue,6);
title('Disturbance Rejection')
legend('Worst-case','Nominal')

Figure 7: Nominal and worst-case rejection of a step disturbance

Clearly some combinations of uncertain elements significantly degrade the ability of the controller to
quickly reject disturbances. Finally, plot the magnitude of the nominal and worst-case values of the
sensitivity function. Observe that the peak value of Sworst occurs at the frequency
maxgain.CriticalFrequency:

bodemag(Sworst,S.NominalValue)
legend('Worst-case','Nominal')
hold on
semilogx(maxgain.CriticalFrequency,20*log10(maxgain.LowerBound),'g*')
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Figure 8: Magnitude of nominal and worst-case sensitivity

See Also
diskmargin | uss | usubs | wcgain

More About
• “Robustness and Worst-Case Analysis” on page 2-27
• “MIMO Robustness Analysis”
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Getting Reliable Estimates of Robustness Margins
This example illustrates the pitfalls of using frequency gridding to compute robustness margins for
systems with only real uncertain parameters. It presents a safer approach along with ways to
mitigate discontinuities in the structured singular value μ.

How Discontinuities Can Hide Robustness Issues

Consider a spring-mass-damper system with 100% parameter uncertainty in the damping coefficient
and 0% uncertainty in the spring coefficient. Note that all uncertainty is of ureal type.

m = 1;
k = 1;
c = ureal('c',1,'plusminus',1);
sys = tf(1,[m c k]);

As the uncertain element c varies, the only place where the poles can migrate from stable to unstable
is at s = j*1 (1 rad/sec). No amount of variation in c can cause them to migrate across the jw-axis at
any other frequency. As a result, the robust stability margin is infinite at all frequencies except 1
rad/s, where the margin with respect to the specified uncertainty is 1. In other words, the robust
stability margin and the underlying structured singular value μ are discontinuous as a function of
frequency.

The traditional approach to computing the robust stability margin is to pick a frequency grid and
compute lower and upper bounds for μ at each frequency point. Under most conditions, the robust
stability margin is continuous with respect to frequency and this approach gives good estimates
provided you use a sufficiently dense frequency grid. However in problems with only ureal
uncertainty, such as the example above, poles can migrate from stable to unstable only at specific
frequencies (the points of discontinuity for μ), so any frequency grid that excludes these particular
frequencies will lead to over-optimistic stability margins.

To see this effect, pick a frequency grid for the spring-mass-damper system above and compute the
robust stability margins at these frequency points using robstab.

omega = logspace(-1,1,40); % one possible grid
[stabmarg,wcu,info] = robstab(sys,omega);
stabmarg

stabmarg = struct with fields:
           LowerBound: 5.0348e+03
           UpperBound: Inf
    CriticalFrequency: 0.1000

The field info.Bounds gives the margin lower and upper bounds at each frequency. Verify that the
lower bound (the guaranteed margin) is large at all frequencies.

loglog(omega,info.Bounds(:,1))
title('Robust stability margin: 40 frequency points')
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Note that making the grid denser would not help. Only by adding f=1 to the grid will we find the true
margin.

f = 1;
stabmarg = robstab(sys,f)

stabmarg = struct with fields:
           LowerBound: 1.0000
           UpperBound: 1
    CriticalFrequency: 1

Safe Computation of Robustness Margins

Rather than specifying a frequency grid, apply robstab directly to the USS model sys. This uses a
more advanced algorithm that is guaranteed to find the peak of μ even in the presence of a
discontinuity. This approach is more accurate and often faster than frequency gridding.

[stabmarg,wcu] = robstab(sys)

stabmarg = struct with fields:
           LowerBound: 1.0000
           UpperBound: 1.0000
    CriticalFrequency: 1.0000
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wcu = struct with fields:
    c: 2.2204e-16

This computes the correct robust stability margin (1), identifies the critical frequency (f=1), and finds
the smallest destabilizing perturbation (setting c=0, as expected).

Modifying the Uncertainty Model to Eliminate Discontinuities

The example above shows that the robust stability margin can be a discontinuous function of
frequency. In other words, it can have jumps. We can eliminate such jumps by adding a small amount
of uncertain dynamics to every uncertain real parameter. This amounts to adding some dynamics to
pure gains. Importantly, as the size of the added dynamics goes to zero, the estimated margin for the
modified problem converges to the true margin for the original problem.

In the spring-mass-damper example, we model c as a ureal with the range [0.05,1.95] rather than
[0,2], and add a ultidyn perturbation with gain bounded by 0.05. This combination covers the
original uncertainty in c and introduces only 5% conservatism.

cc = ureal('cReal',1,'plusminus',0.95) + ultidyn('cUlti',[1 1],'Bound',0.05);
sysreg = usubs(sys,'c',cc);

Recompute the robust stability margin over the frequency grid omega.

[stabmarg,~,info] = robstab(sysreg,omega);
stabmarg

stabmarg = struct with fields:
           LowerBound: 2.3624
           UpperBound: 2.3630
    CriticalFrequency: 0.9427

Now the frequency-gridded calculation yields a margin of 2.36. This is still greater than 1 (the true
margin) because the density of frequency points is not high enough. Increase the number of points
from 40 to 200 and recompute the margin.

OmegaDense = logspace(-1,1,200);
[stabmarg,~,info] = robstab(sysreg,OmegaDense);
stabmarg

stabmarg = struct with fields:
           LowerBound: 1.0026
           UpperBound: 1.0056
    CriticalFrequency: 0.9885

Plot the robustness margin as a function of frequency.

loglog(OmegaDense,info.Bounds(:,1),OmegaDense,info.Bounds(:,2))
title('Robust stability margin: 5% added dynamics, 200 frequency points')
legend('Lower bound','Upper bound')
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The computed margin is now close to 1, the true margin for the original problem. In general, the
stability margin of the modified problem is less than or equal to that of the original problem. If it is
significantly less, then the answer to the question "What is the stability margin?" is very sensitive to
the uncertainty model. In this case, we put more faith in the value that allows for a few percents of
unmodeled dynamics. Either way, the stability margin for the modified problem is more trustworthy.

Automated Regularization of Discontinuous Problems

The command complexify automates the procedure of replacing a ureal with the sum of a ureal
and ultidyn. The analysis above can be repeated using complexify obtaining the same results.

sysreg = complexify(sys,0.05,'ultidyn');
[stabmarg,~,info] = robstab(sysreg,OmegaDense);
stabmarg

stabmarg = struct with fields:
           LowerBound: 1.0026
           UpperBound: 1.0056
    CriticalFrequency: 0.9885

Note that such regularization is only needed when using frequency gridding. Applying robstab
directly to the original uncertain model sys yields the correct margin without frequency gridding or
need for regularization.
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See Also
diskmargin | robstab | wcdiskmargin

Related Examples
• “Robust Stability, Robust Performance and Mu Analysis” on page 2-33

More About
• “Robustness and Worst-Case Analysis” on page 2-27
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Real Mu Analysis
This example shows how to use Robust Control Toolbox™ to analyze the robustness of an uncertain
system with only real parametric uncertainty. You compute the stability margins for a rigid body
transport aircraft using an output feedback control law. For more information about the model, see "A
Practical Approach to Robustness Analysis with Aeronautical Applications" by G. Ferreres. Stability
analysis for systems with only real parametric uncertainty can cause numerical difficulties. In this
example, you compare three methods for computing the stability margins for systems with only real
parametric uncertainty.

Creating An Uncertain Model for a Transport Aircraft

The rigid body model of a large transport aircraft has four states, two inputs, and four outputs. The
states are sideslip (beta), roll rate (p), yaw rate (r), and roll angle (phi). The inputs are rudder
deflection (deltap) and aileron deflection (deltar). The outputs are lateral acceleration (ny), roll rate
(p), yaw rate (r), and roll angle(phi). The state equations depend on 14 aerodynamic coefficients, each
coefficient having 10 percent uncertainty.

Create the uncertainties for the aerodynamic coefficients.

deg2rad = pi/180;      % conversion factor from degs to radians
rad2deg = 1/deg2rad;   % conversion factor from radians to degs
gV = 0.146418;         % g/V
tan_theta0 = 0.14;     % tan(theta0)
alpha0 = 8*deg2rad;    % (rad)

Ybeta = ureal('Ybeta',-0.082,'Percentage',10);
Yp = ureal('Yp',0.010827,'Percentage',10);
Yr = ureal('Yr',0.060268,'Percentage',10);
Ydeltap = ureal('Ydeltap',0.002,'Percentage',10);
Ydeltar = ureal('Ydeltar',0.0118,'Percentage',10);
Lbeta = ureal('Lbeta',-0.84,'Percentage',10);
Lp = ureal('Lp',-0.76,'Percentage',10);
Lr = ureal('Lr',0.74,'Percentage',10);
Ldeltap = ureal('Ldeltap',0.095,'Percentage',10);
Ldeltar = ureal('Ldeltar',0.06,'Percentage',10);
Nbeta = ureal('Nbeta',0.092,'Percentage',10);
Np = ureal('Np',-0.23,'Percentage',10);
Nr = ureal('Nr',-0.114,'Percentage',10);
Ndeltar = ureal('Ndeltar',-0.151,'Percentage',10);

The state equations for the rigid body aircraft dynamics are:

A = [Ybeta (Yp+sin(alpha0)) (Yr-cos(alpha0)) gV; ...
    Lbeta  Lp Lr 0; Nbeta Np Nr 0; 0 1 tan_theta0 0];
B = [Ydeltap Ydeltar; Ldeltap Ldeltar; 0 Ndeltar; 0 0];
C = -1/gV*deg2rad*[Ybeta Yp Yr 0];
C = [C; zeros(3,1) eye(3)];
D = -1/gV*deg2rad*[Ydeltap Ydeltar];
D = [D; zeros(3,2)];
AIRCRAFT = ss(A,B,C,D);

The aircraft model has actuators for the rudder and the aileron. Each actuator is modeled using a
second-order system and the resulting dynamics are added to the input of the rigid body model. P is
the open-loop model of the aircraft and the actuators.
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N1 = [-1.77, 399];
D1 = [1 48.2 399];
deltap_act = tf(N1,D1);

N2 = [2.6 -1185 27350];
D2 = [1 77.7 3331 27350];
deltar_act = tf(N2,D2);

P = AIRCRAFT*blkdiag(deltap_act,deltar_act);

Creating the Closed Loop System

A constant output feedback control law is used and the closed loop is created with the feedback
command.

K = [-629.8858 11.5254 3.3110 9.4278; ...
  285.9496 0.3693 -2.6301 -0.5489];

CLOOP = feedback(P,K);

Stability Analysis: Power Iteration

You can use robstab to compute robust stability margins for this system. This example focuses on
the methods to compute lower bounds on mu, which is equivalent to computing the upper bound on
the stability margin. By default, robstab uses a combination of power iteration and gain-based lower
bound to compute the mu lower bound. First examine power iteration. The 'm' option for mussv is
used to force robstab to use power iteration only.

ropt = robOptions('Mussv','m5','VaryFrequency','on');
[SM1,WCU1,INFO1] = robstab(CLOOP,ropt);

Power iteration is fast and typically provides good bounds for problems with complex uncertainty.
However, it tends to perform poorly for systems with only real parametric uncertainty. For this
example, power iteration finds a lower bound of zero for mu at most frequencies. Thus, the stability
margin upper bound provides no information.

semilogx(INFO1.Frequency,1./INFO1.Bounds)
xlim([1e-3 1e3])
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Figure 1: Mu bounds for Aircraft using power iteration lower bound.

Stability Analysis: Complexify the Real Uncertainty

One way to regularize this robust stability problem is to add a small amount of complex uncertainty to
the real parametric uncertainty using the complexify command. Increasing alpha increases the
complexity of the problem.

alpha = 0.05;
CLOOP_c = complexify(CLOOP,alpha);

There is a trade-off when complexifying real uncertainty. Increasing the amount alpha of complex
uncertainty improves the conditioning of the power iteration, thus increasing the chance of
convergence. However, if you choose alpha too large, then you change the problem enough that the
destabilizing perturbation for the modified problem may be far from destabilizing for the original
problem.

[SM2,WC2,INFO2] = robstab(CLOOP_c,ropt);

The plot shows the upper/lower mu bounds for the complexified problem. The upper bound is
relatively unchanged by the complexification, and therefore complexification does not change the
problem significantly.

semilogx(INFO2.Frequency,1./INFO2.Bounds)
xlim([1e-3 1e3])
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Figure 2: Mu bounds for Aircraft using power iteration + complexify lower bound.

Stability Analysis: Gain-based Lower Bound

For some problems, the amount of complexity necessary to regularize the lower bound significantly
changes the problem and you should use the gain-based lower bound instead. Set 'g' as mussv option
to force robstab to use the gain-based lower bound. Note that this approach is computationally
slower compared to using power iteration and complexifying.

ropt = robOptions('Mussv','g','VaryFrequency','on');
[SM3,WC3,INFO3] = robstab(CLOOP,ropt);

semilogx(INFO3.Frequency,1./INFO3.Bounds)
xlim([1e-3 1e3])
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Figure 3: Mu bounds for Aircraft using gain-based lower bound.

See Also
complexify | robstab

More About
• “Getting Reliable Estimates of Robustness Margins” on page 2-51
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Mu Synthesis

• “Robust Controller Design Using Mu Synthesis” on page 3-2
• “Improve Results of Mu Synthesis” on page 3-8
• “Robust Performance Measure for Mu Synthesis” on page 3-11
• “D-K Iteration Process” on page 3-16
• “First-Cut Robust Design” on page 3-20
• “Control of a Two-Tank System” on page 3-34
• “Simultaneous Stabilization Using Robust Control” on page 3-54
• “Control of Aircraft Lateral Axis Using Mu Synthesis” on page 3-62
• “Control of a Spring-Mass-Damper System Using Mixed-Mu Synthesis” on page 3-77
• “Robust MIMO Controller for Two-Loop Autopilot” on page 3-89
• “Robust Controller for Spinning Satellite” on page 3-102
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Robust Controller Design Using Mu Synthesis
The technique of μ synthesis extends the methods of H∞ synthesis to design a robust controller for an
uncertain plant. You can perform μ synthesis on plants with parameter uncertainty, dynamic
uncertainty, or both using the musyn command.

musyn seeks a controller that minimizes the robust H∞ performance of the closed-loop system. The
robust H∞ performance, also called μ, quantifies how modeled uncertainty affects the performance of
a feedback loop. For details about μ and how it is computed, see “Robust Performance Measure for
Mu Synthesis” on page 3-11.

Basic μ Synthesis Workflow
You can use musyn to:

• Synthesize "black box" unstructured robust controllers.
• Robustly tune a fixed-order or fixed-structure controller made up of tunable components such as

PID controllers, state-space models, and static gains.

μ Synthesis of Unstructured Controllers

μ synthesis of unstructured controllers is analogous to controller synthesis with hinfsyn, except that
the plant includes uncertainty. As with hinfsyn, you set up your problem as the feedback system CL
= lft(P,K), where P is the plant and K is the controller to design.

In the diagram:

• w represents the disturbance inputs.
• u represents the control inputs.
• z represents the error outputs to be kept small.
• y represents the measurement outputs provided to the controller.

You construct the uncertain plant P by building a state-space model with uncertain coefficients
(ureal or ucomplex) blocks, uncertain dynamics (ultidyn blocks), or both. Construct the plant
such that the measurement outputs y are the last outputs, and the control inputs u are the last inputs.
As with hinfsyn, you can optionally augment the plant inputs and outputs with weighting functions
(loop-shaping filters) that represent control objectives.
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You then pass this plant to musyn, which seeks a controller K that minimizes the robust H∞
performance on page 3-11. The controller is returned as a state-space model. For a simple example,
see “Unstructured Robust Controller Synthesis” on the musyn reference page.

μ Synthesis of Fixed-Structure Controllers

Instead of obtaining a controller that is a free-form state-space model, you can specify a fixed
controller structure with tunable parameters. musyn then adjusts those parameters to minimize the
robust H∞ performance of the system. μ synthesis of fixed-structure controllers is analogous to
controller tuning with hinfstruct, except that the plant includes uncertainty.

To set up your problem for fixed-structure μ synthesis, you construct a generalized state-space
(genss) model of the uncertain closed-loop system with tunable controller elements. To do so, you
create and interconnect:

• Numeric LTI models representing the fixed components of the control system
• Uncertain control design blocks such as ureal and ultidyn blocks representing the uncertain

components of the plant
• Optional LTI weighting functions (loop-shaping filters) that represent control objectives
• Tunable control design blocks such as tunablePID, tunableSS, and tunableGain to represent

tunable components of the system

For an example that shows how to build such a model, see “Build Tunable Control System Model With
Uncertain Parameters”.

You pass the tunable, uncertain closed-loop model to musyn, which seeks values of the tunable
parameters that optimize the robust H∞ performance from the model inputs to its outputs. For a
simple example, see “Robust Tuning of Fixed-Structure Controller” on the musyn reference page.

If you have a Simulink® model of your control system, you can use slTuner to linearize the model
with specified uncertain parameters and tunable blocks. You then use getIOTransfer to extract a
genss model for controller design with musyn. For an example, see “Model Uncertainty in Simulink
for Robust Tuning”.

Interpret the Results of μ Synthesis
musyn returns a robust controller K (for unstructured controller tuning) or a tuned version of the
control system CL (for fixed-structure controller tuning). It also returns the best achieved robust H∞
performance as the CLperf output argument. This value tells you that with the controller returned by
musyn, the peak gain of the closed-loop system remains below CLperf for uncertainty up to 1/
CLperf in normalized units. For example:

• CLperf = 0.5 means that the closed-loop gain remains below 0.5 for uncertainty up to twice the
uncertainty specified in the input model. The worst-case gain for the specified uncertainty is
typically smaller.

• CLperf = 2 means that the closed-loop gain remains below 2 for uncertainty up to half the
uncertainty specified in CL. For this value, the worst-case gain for the full specified uncertainty
can be much larger. It can even be infinite, meaning that the system does not remain stable over
the full range of the specified uncertainty.

For more detailed information about this quantity and how it is computed, see “Robust Performance
Measure for Mu Synthesis” on page 3-11.
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To find K, musyn uses an iterative process called D-K iteration. This process solves a sequence of
scaled H∞ problems. The frequency-dependent scalings, called D and G scalings, take advantage of
the uncertainty structure. To perform D-K iteration, musyn:

1 Uses H∞ synthesis to find a controller that minimizes the closed-loop gain of the nominal system.
2 Performs a robustness analysis to estimate the robust H∞ performance of the closed-loop system.

This quantity is expressed as a scaled H∞ norm involving the D and G scalings (the D step).
3 Finds a new controller to minimize the H∞ norm obtained in step 2 (the K step).
4 Repeats steps 2 and 3 until the robust performance stops improving.

For mathematical details about how this algorithm works, see “D-K Iteration Process” on page 3-16.

musyn gives you two ways to monitor and interpret the progress of the algorithm: the default display
and the full display.

Default musyn Display
By default, musyn provides a brief display of algorithm progress in the MATLAB command window.
For instance:

DG-K ITERATION SUMMARY:
-------------------------------------------------------------------
                       Robust performance                 Fit order
-------------------------------------------------------------------
  Iter         K Step       Peak MU       DG Fit           D      G
    1             100        5.747        6.394           10      4
    2           5.221        3.433        4.607           10      6
    3           2.682        2.263        2.627           10      4
    4           1.987        1.687         2.18           10      6
    5           1.287        1.192        1.377           10      8
    6           1.079        1.087         1.09           10      8
    7           1.076        1.046        1.055            8      6
    8           1.049        1.024        1.044           10      6
    9           1.045        1.022        1.039            8      6
   10            1.04        1.023        1.033            8      6

Best achieved robust performance: 1.02

The display includes information about each D-K iteration.

• K Step column — For the first iteration, this value is the H∞ performance of the closed-loop
nominal system after controller synthesis. For remaining iterations, this column shows the scaled
H∞ norm after controller synthesis.

• Peak MU column — Robust performance (μ, an upper bound on μ) for the controller designed in
the K Step.

• DG fit column — Scaled H∞ performance after fitting the D and G scalings with rational
functions.

• Fit order columns — Orders of the rational function used to fit the scalings in that iteration. If
the system has only complex uncertainty, or when the 'MixedMU' option of musynOptions is set
to 'off', then musyn does not apply G scaling. In that case, only the D fit order is listed.
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If you see a large difference between the Peak MU and DG Fit values in a given iteration, it is a sign
that musyn cannot find a good fit for the scalings. In that case, you can try increasing the maximum
fit order using the 'FitOrder' option of musynOptions.

For other ways to improve the results, see “Improve Results of Mu Synthesis” on page 3-8.

Full musyn Display
You can obtain a more detailed view into the progress of D-K iteration by setting the 'Display'
option of musynOptions to 'full'. If you turn on the full display, then musyn pauses after each D-K
iteration so that you can view the detailed results of the iteration. In addition to the information
described in “Default musyn Display” on page 3-4, the full display:

• Shows detailed computation information for the controller synthesis (K step) of the current
iteration. For unstructured controllers, see hinfsyn for information about this display. For fixed-
structure controllers, see hinfstructOptions.

• Shows information about the fits for the D scalings and the G scalings (if any) of the current
iteration. The information includes the fit order of the scalings for each uncertain block. It also
includes a goodness-of-fit score. A score less than or equal to 1 indicates adequate fit for μ
synthesis.

• Generates plots that let you visualize the D and G fits, the robust performance before fitting, and
the scaled H∞ performance after fitting. Examining these plots can help you determine if the
maximum fit order is high enough to capture all the frequency-dependent variation in the scalings
(see the FitOrder option of musynOptions for more information).

The D Fit or D,G Fit plot shows the scaling data and the corresponding rational fits.
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Use the radio buttons to select which scalings to inspect:

• D (diagonal) shows the magnitude of the diagonal elements of the D scalings.
• D (offdiagonal) shows the magnitude and phase of the off-diagonal elements of the D scalings.

This plot is available when your system has repeated uncertain blocks. (See the 'FullDG' option
of musynOptions for more information.)

• jG shows the magnitude and phase of the G-scalings. G scalings are present only when there is
real uncertainty and the MixedMU option of musynOptions is 'on'. See “Improve Results of Mu
Synthesis” on page 3-8.

The Robust Performance plot shows the performance of the closed-loop system before and after
fitting.
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The traces on this plot are:

• Mu upper bound — Robust performance, the upper bound μ as a function of frequency
• Scaled CL for D,G data — Scaled H∞ performance before fitting the D and G scaling data

with rational functions
• Scaled CL for fitted D,G — Scaled H∞ performance after fitting
• Scaled CL for fitted D only — Shows what behavior would not be captured if G were

omitted

For detailed information about the D-K iteration algorithm and the meaning of all the quantities in the
full display, see “D-K Iteration Process” on page 3-16.

See Also
musyn | musynOptions

More About
• “Improve Results of Mu Synthesis” on page 3-8
• “Robust Performance Measure for Mu Synthesis” on page 3-11
• “First-Cut Robust Design” on page 3-20
• “Control of a Spring-Mass-Damper System Using Mixed-Mu Synthesis” on page 3-77
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Improve Results of Mu Synthesis
You can sometimes improve the results of robust controller synthesis with musyn. Even if the default
options yield good results, by changing certain options, you might be able to:

• Find a controller that yields better robust performance.
• Find a lower order controller that yields similar robust performance.

Consider trying several of the techniques described here to see whether the results you obtain from
musyn can be improved.

Mixed-μ Synthesis for Real Uncertainty
By default, musyn treats all uncertainties as complex uncertainties, even those represented by real
parameters. For ureal blocks, musyn assumes that each real parameter has an imaginary part that
can vary by the same amount as the real part. This assumption simplifies the computation, but yields
a more conservative estimate of the robust performance of the system.

When you have real uncertainty, you can instead use mixed-μ synthesis, which explicitly takes into
account the fact that some uncertain parameters are limited to real values. Try using mixed-μ
synthesis to see if it improves the performance relative to the controller you obtain without it.

To use mixed-μ synthesis, set the 'MixedMU' option of musynOptions to 'on'. For an example that
illustrates the benefit of mixed-μ synthesis, see “Control of a Spring-Mass-Damper System Using
Mixed-Mu Synthesis” on page 3-77.

Mixed-μ synthesis complicates the computation and can result in higher order controllers. The
techniques in “Reduce Controller Order” on page 3-8 can help simplify the resulting controller.

Reduce Controller Order
For unstructured controller design, musyn can return relatively high-order controllers. musyn uses
frequency-dependent scaling matrices that are fit by rational functions. (See “D-K Iteration Process”
on page 3-16.) The order required to fit the scalings and the number of uncertain blocks in your
system contribute to the order of the final optimized controller. Therefore, after using musyn for an
initial robust controller design, it can be useful to search for a lower order controller that achieves
similar robust performance. Among approaches to obtaining a lower order controller, you can:

• Reduce the order of controller returned by musyn on page 3-8.
• Use a lower order fixed-structure controller on page 3-9.
• Reduce the maximum scaling order on page 3-9.
• Use diagonal scalings for repeated uncertain blocks on page 3-9.

Reduce Order of Returned Controller

One technique is to use model-reduction commands to reduce the controller that musyn returns, and
find the lowest order approximation that achieves similar performance. For an example illustrating
this approach, see the musynperf reference page.

Even if the initial controller you obtain with musyn is not reducible in a way that preserves robust
performance, a lower order controller that achieves the same performance might exist. Consider
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trying the other techniques to see if varying parameters of the musyn computation can help you find
such a controller.

Lower Order Fixed-Structure Controller

This approach takes advantage of the ability of musyn to tune fixed-structure controllers. Suppose
that you use musyn to design a full-order, centralized controller K for an uncertain plant P with nmeas
measurement signals and ncont control signals. You can create a fixed-order, tunable state-space
model of a lower order than K, and use musyn again to tune the free parameters of that model. If the
new controller achieves robust performance close to that of the unstructured controller, try again
with an even lower order tunable state-space model. For instance, suppose K is a 10th-order
controller returned by musyn for the plant P. The following commands create and tune a fifth-order
state-space controller by forming the closed-loop uncertain system with the tunable controller and
passing it to musyn.

C0 = tunableSS('C0',5,nmeas,ncont);
CL0 = lft(P,C0);
[CL,CLperf,info] = musyn(CL0);

For a simple example, see “Robust Tuning of Fixed-Structure Controller” on the musyn reference
page.

Reduce Maximum Scaling Order

For each iteration, musyn fits each entry in the D and G scaling matrices by a rational function of
automatically selected order. The higher the order of these functions, the higher the order of the
resulting controller. By default, the maximum order is 5 for D scaling, and 2 for the G scaling
matrices. If these defaults yield a controller with good robust performance, try lowering the
maximum order to see if musyn returns a lower-order controller with similar performance. To change
the maximum order, use the 'FitOrder' option of musynOptions.

Diagonal Scalings for Repeated Blocks

If your system has repeated uncertain parameters, you can restrict the D and G scalings so they are
diagonal, which can result in a lower order unstructured controller. For more information, see
“Repeated Parameter Blocks” on page 3-9.

Repeated Parameter Blocks
An uncertain parameter can occur multiple times in a given model. For example, the following code
creates an uncertain state-space model that has two occurrences each of the uncertain parameters
p1 and p2.

p1 = ureal('p1',10); 
p2 = ureal('p2',3); 
A = [-p1 p2;0 -p1]; 
B = [-p2; p2]; 
C = [1 0;1 1]; 
D = [0;0]; 
sys = ss(A,B,C,D)

sys =

  Uncertain continuous-time state-space model with 2 outputs, 1 inputs, 2 states.
  The model uncertainty consists of the following blocks:
    p1: Uncertain real, nominal = 10, variability = [-1,1], 2 occurrences
    p2: Uncertain real, nominal = 3, variability = [-1,1], 2 occurrences
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Type "sys.NominalValue" to see the nominal value, "get(sys)" to see all properties,
and "sys.Uncertainty" to interact with the uncertain elements.

Multiple occurrences of uncertain parameters can increase the order of the rational fit functions for
the D and G scalings. Therefore, they can increase the number of states in the controller returned by
musyn. You can mitigate this effect of repeated parameters in several ways:

• Use diagonal scalings on page 3-10.
• Reduce repetitions of uncertain parameters in the plant on page 3-10.
• Use systune on page 3-10.

Use Diagonal Scalings

By default, musyn by default uses full matrices for the D and G scalings of repeated blocks. Full
scaling matrices can have frequency-dependent entries both on and off the diagonal. Fitting all of
these entries can result in high controller order. If musyn instead uses diagonal scaling, then fewer
independent fit functions are needed, which can reduce the controller order.

Diagonal scaling, is equivalent to treating each repeated block as an independent instance of the
uncertain parameter. Therefore, full scaling is less conservative and can yield better robust
performance. However, to reduce the controller order, you can try diagonal scaling and see whether
musyn can still find an adequate controller using the more conservative estimation of the μ upper
bound.

To specify diagonal scaling for repeated blocks, use the 'FullDG' option of musynOptions.

Reduce Repetitions in the Plant

Use simplify to reduce the number of repeated parameters in the plant before calling musyn. The
simplify command tries to remove redundant instances of uncertain blocks.

Use systune

If you have more than about five repeated instances of an uncertain parameter and have no dynamic
uncertainty (no ultidyn blocks), consider using systune instead of musyn. The systune command
tunes fixed-structure controller elements. It can perform robust controller tuning without degradation
caused by large numbers of repeated blocks. For more information on ways to perform robust tuning
with systune, see “Robust Tuning Approaches”.

See Also
musyn | musynOptions

More About
• “Robust Controller Design Using Mu Synthesis” on page 3-2
• “Robust Performance Measure for Mu Synthesis” on page 3-11
• “Control of a Spring-Mass-Damper System Using Mixed-Mu Synthesis” on page 3-77
• “Simultaneous Stabilization Using Robust Control” on page 3-54
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Robust Performance Measure for Mu Synthesis
The robust H∞ performance quantifies how modeled uncertainty affects the performance of a
feedback loop. Performance here is measured with the H∞ norm (peak gain) of a transfer function of
interest, such as that from disturbance to error signals. (See “H-Infinity Performance”.)

For a system T(s), the robust H∞ performance μ is the smallest value γ such that the peak gain of T
remains below γ for uncertainty up to 1/γ, in normalized units. For example:

• μ = 0.5 means that ||T(s)||∞ remains below 0.5 for uncertainty up to twice the uncertainty
specified in T. The worst-case gain for the specified uncertainty is typically smaller.

• μ = 2 means that ||T(s)||∞ remains below 2 for uncertainty up to half the uncertainty specified in T.
For this value, the worst-case gain for the full specified uncertainty can be much larger. It can
even be infinite, meaning that the system does not remain stable over the full range of the
specified uncertainty.

The quantity μ is the peak value over frequency of the structured singular value μ(ω) for the
uncertainty specified in T. This quantity is a generalization of the singular value for uncertain
systems. It depends on the structure of the uncertainty in the system. In practice, μ is difficult to
compute exactly, so the software instead computes lower and upper bounds, μ and μ. The upper
bound μ has several applications in control system design and analysis. You can:

• Use musyn to design a controller for an uncertain plant that minimizes μ of the closed-loop
system. In addition to the resulting controller, musyn returns the corresponding value of μ in the
CLperf output argument.

• Use musynperf evaluate the robust performance of an uncertain system. This function returns
lower and upper bounds on μ, the uncertainty values that yield the peak μ, and other information
about the closed-loop robust performance.

Uncertain Model
To understand the computation of robust H∞ performance, consider an uncertain system T(s),
modeled as a fixed portion T0 and an uncertain portion Δunc/γ.

Δunc collects the uncertain elements {Δ1,…,ΔN}.
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Δunc =
Δ1

⋱
ΔN

.

Each Δj is an arbitrary real, complex, or dynamic uncertainty that is normalized such that ||Δj||∞ ≤ 1.
The factor γ adjusts the level of uncertainty.

Robust Performance as a Robust Stability Margin
Suppose that for the system modeled as in diagram (a),

||T||∞ ≤ γ for all ||Δunc||∞ ≤ 1.

By the small-gain theorem (see [1]), this robust performance condition is equivalent to stating that
the system of diagram (b), LFT(Δperf/γ,T), is stable for all for all ||Δperf||∞ ≤ 1.

Δperf is called the performance block. Expand T as in diagram (a), and group Δperf with the uncertain
blocks Δunc to define a new block Δ,

Δ ≜
Δperf 0

0 Δunc
.

The result is the system in the following diagram.
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Thus, the robust performance condition on the system of diagram (a) is equivalent to a stability
condition on diagram (c), or

T ∞ ≤ γ for all Δunc ∞ ≤ 1 LFT Δ/γ , T0 ∞ stable for all Δ ∞ ≤ 1.

The robust performance μ is the smallest γ for which this stability condition holds. Equivalently, 1/μ is
the largest uncertainty level 1/γ for which the system of diagram (c) is robustly stable. In other
words, 1/μ is the robust stability margin of the feedback loop of diagram (c) for the augmented
uncertainty Δ. (For more information on robust stability margins, see “Robustness and Worst-Case
Analysis” on page 2-27.)

Upper Bound of μ
To obtain an estimate on the upper bound of μ, the software introduces scalings. If the system in
diagram (c) is stable for all ||Δ||∞ ≤ 1, then the system of the following diagram is also stable, for any
invertible D.

If D commutes with Δ, then the system of diagram (d) is the same as the system in the following
diagram.
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The matrices D that structurally commute with Δ are called D scalings. They can be frequency
dependent, which is denoted by D(ω).

Define μ as:

μ ≜ inf
D ω

D ω T0 jω D ω −1
∞ .

For the optimal D*(ω), and any γ ≥ μ,

D* ω T0 jω D* ω −1
∞ ≤ γ .

Therefore, by the small-gain theorem, the system of diagram (e) is stable for all ||Δ||∞ ≤ 1. It follows
that 1/γ ≤ 1/μ, or γ ≤ μ, because 1/μ is the robust stability margin. Consequently, μ ≤ μ, so that μ is
an upper bound for the robust performance μ. This upper bound μ is the quantity computed by
musynperf and optimized by musyn.

D and G Scalings
When all the uncertain elements Δj are complex or LTI dynamics, the software approximates μ by
picking a frequency grid {ω1,…,ωN}. At each frequency point, the software solves the optimal scaling
problem

μi = inf
Di

DiT0 jωi Di−1 .

It then sets μ to the largest result over all frequencies in the grid,

μ = max
i

μi .

When some Δj are real, it is possible to obtain a less conservative upper bound by using additional
scalings called G scalings. In this case, μ is the smallest μi over frequency such that

T0 jωi
I

H Dr ωi − jGcr
H ωi

jGcr ωi −μi
2Dc ωi

T0 jωi
I

≤ 0

for some Dr(ωi), Dc(ωi), and Gcr(ωi). These frequency-dependent matrices are the D and G scalings.

Mu Synthesis
The musyn command synthesizes robust controllers using an iterative process that optimizes the
robust performance μ. To learn how to use musyn, see “Robust Controller Design Using Mu
Synthesis” on page 3-2. For details about the musyn algorithm, see “D-K Iteration Process” on page 3-
16.

References
[1] Skogestad, S. and I. Postlethwaite, Multivariable Feedback Control: Analysis and Design, 2d ed.

West Sussex, England: John Wiley & Sons, 2005, pp. 156, 306.
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See Also
musyn | musynperf

More About
• “Robust Controller Design Using Mu Synthesis” on page 3-2
• “D-K Iteration Process” on page 3-16
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D-K Iteration Process
You can use the musyn command to design a robust controller for an uncertain plant, as described in
“Robust Controller Design Using Mu Synthesis” on page 3-2. The algorithm used by musyn is an
iterative process called D-K iteration. In this process, the function:

1 Uses H∞ synthesis to find a controller that minimizes the closed-loop gain of the nominal system.
2 Performs a robustness analysis to estimate the robust H∞ performance of the closed-loop system.

This quantity is expressed as a scaled H∞ norm involving dynamic scalings called the D and G
scalings (the D step).

3 Finds a new controller to minimize the scaled H∞ norm obtained in step 2 (the K step).
4 Repeats steps 2 and 3 until the robust performance stops improving.

Both the D step and K step are mathematically intensive computations. Details of the algorithm
follow.

D Step
In the D step, musyn computes the upper bound μ of the robust H∞ performance for the current
controller K. The D step begins with a robust performance analysis for the closed-loop uncertain
system T = LFT(P,K), as in the following diagram.

Introducing a performance block Δperf transforms the robust-performance analysis of T to a robust-
stability analysis of the feedback loop in the following diagram.

3 Mu Synthesis

3-16



Here, Δ is the augmented uncertainty structure

Δ ≜
Δperf 0

0 Δunc
.

musyn computes μ, an upper bound on the robust H∞ performance. To do so, musyn selects a
frequency grid {ω1,…,ωN}. For T with complex uncertainty only, musyn computes at each frequency
ωi

μi = inf
Di

DiT0 jωi Di−1 .

The frequency-dependent matrices D, which commute with Δ, are called D scalings. μ is the largest
result over all frequencies in the grid,

μ = max
i

μi .

When you use musyn, you can access the results of the D step in several ways.

• The default musyn display shows μ for each iteration in the Peak MU column.
• musyn returns μ for each iteration in the PeakMU field of the info output argument.
• musyn returns Di in the DG field of the info output argument.
• To visualize the frequency-dependence of Di, set the 'Display' option of musynOptions to

'full'.

For additional details about the computation and interpretation of μ, see “Robust Performance
Measure for Mu Synthesis” on page 3-11.

D-Fitting and Scaled H∞ Performance
musyn fits a rational function D(s) to the sequence of scalings {Di}. The fit yields a quantity μF called
the scaled H∞ performance,

μF ≜ D T0 D−1
∞ .

Because the fit is not exact, μF is typically somewhat larger than μ.

You can access the results of the fit in several ways.
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• The default musyn display shows μF for each iteration in the DG Fit column.
• musyn returns μF for each iteration in the PeakMUFit field of the info output argument.
• musyn returns the fitting functions in the dr and dc fields of the info output argument.
• To visualize the frequency dependence of the fitting functions, set the 'Display' option of

musynOptions to 'full'.

K Step
T0 depends on the choice of controller K by the relation T0 = LFT(P0,K). Therefore, minimizing μF with
respect to K is a scaled H∞ synthesis problem. Thus, in the K step, musyn uses hinfsyn or
hinfstruct to compute a controller K* that minimizes μF. The minimized quantity is the scaled H∞
norm. For the algorithm to make progress, the new controller must improve the robust performance
obtained in the D step:

D LFT P0, K* D−1
∞ < μ .

Otherwise, the progress is not sufficient for compensate for fitting errors. Thus musyn terminates D-K
iteration process when K* does not improve the robust performance within the tolerance specified by
the 'TolPerf' option of musynOptions.

You can access the results of the K step in several ways.

• The default musyn display shows the scaled H∞ norm for each iteration in the K Step column.
• musyn returns the new controller in the K of the info output argument, and the corresponding

scaled H∞ norm for each iteration in the gamma field.

Mixed Real and Complex Uncertainty
When the system has both real and complex uncertainty and you set the 'MixedMU' option of
musynOptions to 'on', musyn uses an additional G-scaling to improve the computation of μ. The
algorithm in this case is called mixed-μ synthesis.

For mixed uncertainty, musyn computes μi and scalings Dr(ωi), Dc(ωi), and Gcr(ωi) such that

T0 jωi
I

H Dr ωi − jGcr
H ωi

jGcr ωi −μi
2Dc ωi

T0 jωi
I

≤ 0

at each frequency in the grid.

musyn fits the D and G scaling data by constructing a rational function

F s = Ψ s
dr s 0

0 dc s

such that

• dr(s), dc(s), and Ψ(s) are stable with stable inverse.
• dr(s) and dc(s) approximate the square roots of the diagonal entries of Dr(ωi) and Dc(ωi).
• F approximately satisfies
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Dr ωi − jGcr
H ωi

jGcr ωi −μ2Dc ωi
≈ F jωi

H J F jωi ,

J =
Ir 0
0 −Ic

.

Finally, the scaled H∞ performance is defined as

μF ≜ T s ∞,

where T s  is the transformed system,

T s ≜ μT1T2
−1,

T1 s

T2 s
≜ Ψ s

dr s T0 s
dc s

.

For an exact fit of D and G, T jωi = μi. Therefore, in general, μF ≥ μ .

Because the transformed system T s  is still a linear fractional function of the controller K, the K step
for the mixed-μ case proceeds by computing a controller K* that minimizes T ∞.

When using musyn, you can access the D and G scalings in several ways.

• musyn returns the D and G scaling data in the DG field of the info output argument.
• musyn returns the fitting functions in the dr, dc, and PSI fields of the info output argument.
• To visualize the frequency dependence of the scaling data and fitting functions, set the

'Display' option of musynOptions to 'full'.

See Also
musyn | musynOptions | musynperf

More About
• “Robust Performance Measure for Mu Synthesis” on page 3-11
• “Robust Controller Design Using Mu Synthesis” on page 3-2
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First-Cut Robust Design
This example shows how to use the Robust Control Toolbox™ commands usample, ucover and
musyn to design a robust controller with standard performance objectives. It can serve as a template
for more complex robust control design tasks.

Introduction

The plant model consists of a first-order system with uncertain gain and time constant in series with a
mildly underdamped resonance and significant unmodeled dynamics. The uncertain variables are
specified using ureal and ultidyn and the uncertain plant model P is constructed as a product of
simple transfer functions:

gamma = ureal('gamma',2,'Perc',30);  % uncertain gain
tau = ureal('tau',1,'Perc',30);      % uncertain time-constant
wn = 50; xi = 0.25;
P = tf(gamma,[tau 1]) * tf(wn^2,[1 2*xi*wn wn^2]);
% Add unmodeled dynamics
delta = ultidyn('delta',[1 1],'SampleStateDim',5,'Bound',1);
W = makeweight(0.1,20,10);
P = P * (1+W*delta);

A collection of step responses for randomly sampled uncertainty values illustrates the plant
variability.

step(P,5)
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Covering the Uncertain Model

The uncertain plant model P contains 3 uncertain elements. For feedback design purposes, it is often
desirable to simplify the uncertainty model while approximately retaining its overall variability. This is
one use of the command ucover. This command takes an array of LTI responses Pa and a nominal
response Pn and models the difference Pa-Pn as multiplicative uncertainty in the system dynamics
(ultidyn).

To use ucover, first map the uncertain model P into a family of LTI responses using usample. This
command samples the uncertain elements in an uncertain system. It returns an array of LTI models
where each model representing one possible behavior of the uncertain system. In this example,
generate 60 sample values of P:

rng('default');     % the random number generator is seeded for repeatability
Parray = usample(P,60);

Next, use ucover to cover all behaviors in Parray by a simple uncertain model of the form

Usys = Pn * (1 + Wt * Delta)

where all the uncertainty is concentrated in the "unmodeled dynamics" component Delta (a
ultidyn object). Choose the nominal value of P as center Pn of the cover, and use a 2nd-order
shaping filter Wt to capture how the relative gap between Parray and Pn varies with frequency.

Pn = P.NominalValue;
orderWt = 2;
Parrayg = frd(Parray,logspace(-3,3,60));
[Usys,Info] = ucover(Parrayg,Pn,orderWt,'in');

Verify that the filter magnitude (in red) "covers" the relative variations of the plant frequency
response (in blue).

Wt = Info.W1;
bodemag((Pn-Parray)/Pn,'b--',Wt,'r')
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Creating the Open-Loop Design Model

To design a robust controller for the uncertain plant P, choose a target closed-loop bandwidth desBW
and perform a sensitivity-minimization design using the simplified uncertainty model Usys. The
control structure is shown in Figure 1. The main signals are the disturbance d, the measurement
noise n, the control signal u, and the plant output y. The filters Wperf and Wnoise reflect the
frequency content of the disturbance and noise signals, or equivalently, the frequency bands where
good disturbance and noise rejection properties are needed.

Our goal is to keep y close to zero by rejecting the disturbance d and minimizing the impact of the
measurement noise n. Equivalently, we want to design a controller that keeps the gain from [d;n] to
y "small." Note that

y  = Wperf * 1/(1+PC) * d + Wnoise * PC/(1+PC) * n

so the transfer function of interest consists of performance- and noise-weighted versions of the
sensitivity function 1/(1+PC) and complementary sensitivity function PC/(1+PC).

3 Mu Synthesis

3-22



Figure 1: Control Structure.

Choose the performance weighting function Wperf as a first-order low-pass filter with magnitude
greater than 1 at frequencies below the desired closed-loop bandwidth:

desBW = 0.4;
Wperf = makeweight(500,desBW,0.5);

To limit the controller bandwidth and induce roll off beyond the desired bandwidth, use a sensor
noise model Wnoise with magnitude greater than 1 at frequencies greater than 10*desBW:

Wnoise = 0.0025 * tf([25 7 1],[2.5e-5 .007 1]);

Plot the magnitude profiles of Wperf and Wnoise:

bodemag(Wperf,'b',Wnoise,'r'), grid
title('Performance weight and sensor noise model')
legend('Wperf','Wnoise','Location','SouthEast')
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Next build the open-loop interconnection of Figure 1:

Usys.InputName = 'u'; Usys.OutputName = 'yp';
Wperf.InputName = 'd'; Wperf.OutputName = 'yd';
Wnoise.InputName = 'n'; Wnoise.OutputName = 'yn';

sumy = sumblk('y = yp + yd');
sume = sumblk('e = -y - yn');

M = connect(Usys,Wperf,Wnoise,sumy,sume,{'d','n','u'},{'y','e'});

First Design: Low Bandwidth Requirement

The controller design is carried out with the automated robust design command musyn. The
uncertain open-loop model is given by M.

[ny,nu] = size(Usys);
[K1,muBound] = musyn(M,ny,nu);

D-K ITERATION SUMMARY:
-----------------------------------------------------------------
                       Robust performance               Fit order
-----------------------------------------------------------------
  Iter         K Step       Peak MU       D Fit             D
    1           223.6        100.4        101.4             2
    2           20.15        1.759        1.774            10
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    3          0.9756       0.9678       0.9783             8
    4          0.9284       0.9284       0.9321             6
    5          0.9117       0.9118       0.9201            10
    6          0.9015       0.9015       0.9038            10
    7          0.8997       0.8997       0.9001            10
    8          0.8967       0.8967       0.8992             8

Best achieved robust performance: 0.897

The robust performance muBound is a positive scalar. If it is near 1, then the design is successful and
the desired and effective closed-loop bandwidths match closely. As a rule of thumb, if muBound is less
than 0.85, then the achievable performance can be improved. When muBound is greater than 1.2,
then the desired closed-loop bandwidth is not achievable for the given amount of plant uncertainty.

Since, here, muBound is approximately 0.9, the objectives are met, but could ultimately be improved
upon. For validation purposes, create Bode plots of the open-loop response for different values of the
uncertainty and note the typical zero-dB crossover frequency and phase margin:

opt = bodeoptions;
opt.PhaseMatching = 'on';
opt.Grid = 'on';

bodeplot(Parray*K1,{1e-2,1e2},opt);

Randomized closed-loop Bode plots confirm a closed-loop disturbance rejection bandwidth of
approximately 0.4 rad/s.

 First-Cut Robust Design

3-25



S1 = feedback(1,Parray*K1);  % sensitivity to output disturbance
bodemag(S1,{1e-2,1e3}), grid

Finally, compute and plot the closed-loop responses to a step disturbance at the plant output. These
are consistent with the desired closed-loop bandwidth of 0.4, with settling times approximately 7
seconds.

step(S1,8);
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In this naive design strategy, we have correlated the noise bandwidth with the desired closed-loop
bandwidth. This simply helps limit the controller bandwidth. A fair perspective is that this approach
focuses on output disturbance attenuation in the face of plant model uncertainty. Sensor noise is not
truly addressed. Problems with considerable amounts of sensor noise would be dealt with in a
different manner.

Second Design: Higher Bandwidth Requirement

Let's redo the design for a higher target bandwidth and adjusting the noise bandwidth as well.

desBW = 2;
Wperf = makeweight(500,desBW,0.5);
Wperf.InputName = 'd'; Wperf.OutputName = 'yd';
Wnoise = 0.0025 * tf([1 1.4 1],[1e-6 0.0014 1]);
Wnoise.InputName = 'n'; Wnoise.OutputName = 'yn';

M = connect(Usys,Wperf,Wnoise,sumy,sume,{'d','n','u'},{'y','e'});
[K2,muBound2] = musyn(M,ny,nu);

D-K ITERATION SUMMARY:
-----------------------------------------------------------------
                       Robust performance               Fit order
-----------------------------------------------------------------
  Iter         K Step       Peak MU       D Fit             D
    1           223.6        100.5        101.4             2

 First-Cut Robust Design

3-27



    2           20.17        2.116        2.135            10
    3           1.254        1.249        1.261            10
    4           1.178        1.178        1.192            10
    5           1.154        1.154        1.159            10
    6           1.141        1.141        1.144            10
    7           1.132        1.132        1.135            10
    8           1.124        1.124        1.125            10
    9           1.121        1.121        1.125             8
   10           1.114        1.114        1.124            10

Best achieved robust performance: 1.11

With a robust performance of about 1.1, this design achieves a good tradeoff between performance
goals and plant uncertainty. Open-loop Bode plots confirm a fairly robust design with decent phase
margins, but not as good as the lower bandwidth design.

bodeplot(Parray*K2,{1e-2,1e2},opt)

Randomized closed-loop Bode plots confirm a closed-loop bandwidth of approximately 2 rad/s. The
frequency response has a bit more peaking than was seen in the lower bandwidth design, due to the
increased uncertainty in the model at this frequency. Since the Robust Performance mu-value was
1.1, we expected some degradation in the robustness of the performance objectives over the lower
bandwidth design.

S2 = feedback(1,Parray*K2);
bodemag(S2,{1e-2,1e3}), grid
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Closed-loop step disturbance responses further illustrate the higher bandwidth response, with
reasonable robustness across the plant model variability.

step(S2,8);
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Third Design: Very Aggressive Bandwidth Requirement

Redo the design once more with an extremely optimistic closed-loop bandwidth goal of 15 rad/s.

desBW = 15;
Wperf = makeweight(500,desBW,0.5);
Wperf.InputName = 'd'; Wperf.OutputName = 'yd';
Wnoise = 0.0025 * tf([0.018 0.19 1],[0.018e-6 0.19e-3 1]);
Wnoise.InputName = 'n'; Wnoise.OutputName = 'yn';

M = connect(Usys,Wperf,Wnoise,sumy,sume,{'d','n','u'},{'y','e'});
[K3,muBound3] = musyn(M,ny,nu);

D-K ITERATION SUMMARY:
-----------------------------------------------------------------
                       Robust performance               Fit order
-----------------------------------------------------------------
  Iter         K Step       Peak MU       D Fit             D
    1           223.6        100.9        101.8             2
    2           20.26        3.618        3.649             8
    3           2.189        2.189        2.215            10
    4           1.997        1.997        2.014            10
    5           1.919        1.919        1.933            10
    6           1.873        1.873        1.932             6
    7            1.85         1.85        1.872            10
    8           1.826        1.826        1.845             8
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    9           1.818        1.818         1.83             8
   10           1.811        1.811        1.818             8

Best achieved robust performance: 1.81

Since the robust performance is greater than 1.8, the closed-loop performance goals are not achieved
under plant uncertainties. The frequency responses of the closed-loop system have higher peaks
indicating the poor performance of the designed controller.

S3 = feedback(1,Parray*K3);
bodemag(S3,{1e-2,1e3}), grid

Similarly, step responses under uncertainties illustrate the poor closed-loop performance.

step(S3,1);
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Robust Stability Calculations

The Bode and Step response plots shown above are generated from samples of the uncertain plant
model P. We can use the uncertain model directly, and assess the robust stability of the three closed-
loop systems.

ropt = robOptions('Display','on','MussvOptions','sm5');
stabmarg1 = robstab(feedback(P,K1),ropt);

Computing peak...  Percent completed: 100/100
System is robustly stable for the modeled uncertainty.
 -- It can tolerate up to 275% of the modeled uncertainty.
 -- There is a destabilizing perturbation amounting to 276% of the modeled uncertainty.
 -- This perturbation causes an instability at the frequency 7.69 rad/seconds.

stabmarg2 = robstab(feedback(P,K2),ropt);

Computing peak...  Percent completed: 100/100
System is robustly stable for the modeled uncertainty.
 -- It can tolerate up to 151% of the modeled uncertainty.
 -- There is a destabilizing perturbation amounting to 151% of the modeled uncertainty.
 -- This perturbation causes an instability at the frequency 17.3 rad/seconds.

stabmarg3 = robstab(feedback(P,K3),ropt);

Computing peak...  Percent completed: 100/100
System is not robustly stable for the modeled uncertainty.
 -- It can tolerate up to 83.9% of the modeled uncertainty.
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 -- There is a destabilizing perturbation amounting to 84% of the modeled uncertainty.
 -- This perturbation causes an instability at the frequency 79.5 rad/seconds.

The robustness analysis reports confirm what we have observed by sampling the closed-loop time and
frequency responses. The second design is a good compromise between performance and robustness,
and the third design is too aggressive and lacks robustness.

See Also
musyn | robstab | ucover

More About
• “Robust Controller Design Using Mu Synthesis” on page 3-2
• “Robustness and Worst-Case Analysis” on page 2-27
• “Control of a Two-Tank System” on page 3-34
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Control of a Two-Tank System
This example shows how to use Robust Control Toolbox™ to design a robust controller (using D-K
iteration) and to do robustness analysis on a process control problem. In our example, the plant is a
simple two-tank system.

Additional experimental work relating to this system is described by Smith et al. in the following
references:

• Smith, R.S., J. Doyle, M. Morari, and A. Skjellum, "A Case Study Using mu: Laboratory Process
Control Problem," Proceedings of the 10th IFAC World Congress, vol. 8, pp. 403-415, 1987.

• Smith, R.S, and J. Doyle, "The Two Tank Experiment: A Benchmark Control Problem," in
Proceedings American Control Conference, vol. 3, pp. 403-415, 1988.

• Smith, R.S., and J. C. Doyle, "Closed Loop Relay Estimation of Uncertainty Bounds for Robust
Control Models," in Proceedings of the 12th IFAC World Congress, vol. 9, pp. 57-60, July 1993.

Plant Description

The plant in our example consists of two water tanks in cascade as shown schematically in Figure 1.
The upper tank (tank 1) is fed by hot and cold water via computer-controlled valves. The lower tank
(tank 2) is fed by water from an exit at the bottom of tank 1. An overflow maintains a constant level in
tank 2. A cold water bias stream also feeds tank 2 and enables the tanks to have different steady-state
temperatures.

Our design objective is to control the temperatures of both tanks 1 and 2. The controller has access
to the reference commands and the temperature measurements.
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Figure 1: Schematic diagram of a two-tank system

Tank Variables

Let's give the plant variables the following designations:

• fhc: Command to hot flow actuator
• fh: Hot water flow into tank 1
• fcc: Command to cold flow actuator
• fc: Cold water flow into tank 1
• f1: Total flow out of tank 1
• A1: Cross-sectional area of tank 1
• h1: Tank 1 water level
• t1: Temperature of tank 1
• t2: Temperature of tank 2
• A2: Cross-sectional area of tank 2
• h2: Tank 2 water level
• fb: Flow rate of tank 2 bias stream
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• tb: Temperature of tank 2 bias stream
• th: Hot water supply temperature
• tc: Cold water supply temperature

For convenience we define a system of normalized units as follows:

  Variable      Unit Name      0 means:             1 means:
  --------      ---------      --------             --------
  temperature   tunit          cold water temp.     hot water temp.
  height        hunit          tank empty           tank full
  flow          funit          zero input flow      max. input flow

Using the above units, these are the plant parameters:

A1 = 0.0256;    % Area of tank 1 (hunits^2)
A2 = 0.0477;    % Area of tank 2 (hunits^2)
h2 = 0.241;        % Height of tank 2, fixed by overflow (hunits)
fb = 3.28e-5;   % Bias stream flow (hunits^3/sec)
fs = 0.00028;    % Flow scaling (hunits^3/sec/funit)
th = 1.0;        % Hot water supply temp (tunits)
tc = 0.0;        % Cold water supply temp (tunits)
tb = tc;        % Cold bias stream temp (tunits)
alpha = 4876;   % Constant for flow/height relation (hunits/funits)
beta = 0.59;    % Constant for flow/height relation (hunits)

The variable fs is a flow-scaling factor that converts the input (0 to 1 funits) to flow in hunits^3/
second. The constants alpha and beta describe the flow/height relationship for tank 1:

h1 = alpha*f1-beta.

Nominal Tank Models

We can obtain the nominal tank models by linearizing around the following operating point (all
normalized values):

h1ss = 0.75;                            % Water level for tank 1
t1ss = 0.75;                            % Temperature of tank 1
f1ss = (h1ss+beta)/alpha;               % Flow tank 1 -> tank 2
fss = [th,tc;1,1]\[t1ss*f1ss;f1ss];
fhss = fss(1);                          % Hot flow
fcss = fss(2);                          % Cold flow
t2ss = (f1ss*t1ss + fb*tb)/(f1ss + fb); % Temperature of tank 2

The nominal model for tank 1 has inputs [ fh; fc] and outputs [ h1; t1]:

A = [ -1/(A1*alpha),          0;
      (beta*t1ss)/(A1*h1ss),  -(h1ss+beta)/(alpha*A1*h1ss)];

B = fs*[ 1/(A1*alpha),   1/(A1*alpha);
         th/A1,          tc/A1];

C = [ alpha,             0;
      -alpha*t1ss/h1ss,  1/h1ss];

D = zeros(2,2);
tank1nom = ss(A,B,C,D,'InputName',{'fh','fc'},'OutputName',{'h1','t1'});
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clf
step(tank1nom), title('Step responses of Tank 1')

Figure 2: Step responses of Tank 1.

The nominal model for tank 2 has inputs [|h1|;|t1|] and output t2:

A = -(h1ss + beta + alpha*fb)/(A2*h2*alpha);
B = [ (t2ss+t1ss)/(alpha*A2*h2),  (h1ss + beta)/(alpha*A2*h2) ];
C = 1;
D = zeros(1,2);

tank2nom = ss(A,B,C,D,'InputName',{'h1','t1'},'OutputName','t2');

step(tank2nom), title('Step responses of Tank 2')
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Figure 3: Step responses of Tank 2.

Actuator Models

There are significant dynamics and saturations associated with the actuators, so we'll want to include
actuator models. In the frequency range we're using, we can model the actuators as a first order
system with rate and magnitude saturations. It is the rate limit, rather than the pole location, that
limits the actuator performance for most signals. For a linear model, some of the effects of rate
limiting can be included in a perturbation model.

We initially set up the actuator model with one input (the command signal) and two outputs (the
actuated signal and its derivative). We'll use the derivative output in limiting the actuation rate when
designing the control law.

act_BW = 20;        % Actuator bandwidth (rad/sec)
actuator = [ tf(act_BW,[1 act_BW]); tf([act_BW 0],[1 act_BW]) ];
actuator.OutputName = {'Flow','Flow rate'};

bodemag(actuator)
title('Valve actuator dynamics')

hot_act = actuator;
set(hot_act,'InputName','fhc','OutputName',{'fh','fh_rate'});
cold_act =actuator;
set(cold_act,'InputName','fcc','OutputName',{'fc','fc_rate'});
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Figure 4: Valve actuator dynamics.

Anti-Aliasing Filters

All measured signals are filtered with fourth-order Butterworth filters, each with a cutoff frequency of
2.25 Hz.

fbw = 2.25;        % Anti-aliasing filter cut-off (Hz)
filter = mkfilter(fbw,4,'Butterw');
h1F = filter;
t1F = filter;
t2F = filter;

Uncertainty on Model Dynamics

Open-loop experiments reveal some variability in the system responses and suggest that the linear
models are good at low frequency. If we fail to take this information into account during the design,
our controller might perform poorly on the real system. For this reason, we will build an uncertainty
model that matches our estimate of uncertainty in the physical system as closely as possible. Because
the amount of model uncertainty or variability typically depends on frequency, our uncertainty model
involves frequency-dependent weighting functions to normalize modeling errors across frequency.

For example, open-loop experiments indicate a significant amount of dynamic uncertainty in the t1
response. This is due primarily to mixing and heat loss. We can model it as a multiplicative (relative)
model error Delta2 at the t1 output. Similarly, we can add multiplicative model errors Delta1 and
Delta3 to the h1 and t2 outputs as shown in Figure 5.
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Figure 5: Schematic representation of a perturbed, linear two-tank system.

To complete the uncertainty model, we quantify how big the modeling errors are as a function of
frequency. While it's difficult to determine precisely the amount of uncertainty in a system, we can
look for rough bounds based on the frequency ranges where the linear model is accurate or poor, as
in these cases:

• The nominal model for h1 is very accurate up to at least 0.3 Hz.
• Limit-cycle experiments in the t1 loop suggest that uncertainty should dominate above 0.02 Hz.
• There are about 180 degrees of additional phase lag in the t1 model at about 0.02 Hz. There is

also a significant gain loss at this frequency. These effects result from the unmodeled mixing
dynamics.

• Limit cycle experiments in the t2 loop suggest that uncertainty should dominate above 0.03 Hz.

This data suggests the following choices for the frequency-dependent modeling error bounds.

Wh1 = 0.01+tf([0.5,0],[0.25,1]);
Wt1 = 0.1+tf([20*h1ss,0],[0.2,1]);
Wt2 = 0.1+tf([100,0],[1,21]);

clf
bodemag(Wh1,Wt1,Wt2), title('Relative bounds on modeling errors')
legend('h1 dynamics','t1 dynamics','t2 dynamics','Location','NorthWest')
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Figure 6: Relative bounds on modeling errors.

Now, we're ready to build uncertain tank models that capture the modeling errors discussed above.

% Normalized error dynamics
delta1 = ultidyn('delta1',[1 1]);
delta2 = ultidyn('delta2',[1 1]);
delta3 = ultidyn('delta3',[1 1]);

% Frequency-dependent variability in h1, t1, t2 dynamics
varh1 = 1+delta1*Wh1;
vart1 = 1+delta2*Wt1;
vart2 = 1+delta3*Wt2;

% Add variability to nominal models
tank1u = append(varh1,vart1)*tank1nom;
tank2u = vart2*tank2nom;

tank1and2u = [0 1; tank2u]*tank1u;

Next, we randomly sample the uncertainty to see how the modeling errors might affect the tank
responses

step(tank1u,1000), title('Variability in responses due to modeling errors (Tank 1)')
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Figure 7: Variability in responses due to modeling errors (Tank 1).

Setting up a Controller Design

Now let's look at the control design problem. We're interested in tracking setpoint commands for t1
and t2. To take advantage of H-infinity design algorithms, we must formulate the design as a closed-
loop gain minimization problem. To do so, we select weighting functions that capture the disturbance
characteristics and performance requirements to help normalize the corresponding frequency-
dependent gain constraints.

Here is a suitable weighted open-loop transfer function for the two-tank problem:
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Figure 8: Control design interconnection for two-tank system.

Next, we select weights for the sensor noises, setpoint commands, tracking errors, and hot/cold
actuators.

The sensor dynamics are insignificant relative to the dynamics of the rest of the system. This is not
true of the sensor noise. Potential sources of noise include electronic noise in thermocouple
compensators, amplifiers, and filters, radiated noise from the stirrers, and poor grounding. We use
smoothed FFT analysis to estimate the noise level, which suggests the following weights:

Wh1noise = zpk(0.01);  % h1 noise weight
Wt1noise = zpk(0.03);  % t1 noise weight
Wt2noise = zpk(0.03);  % t2 noise weight

The error weights penalize setpoint tracking errors on t1 and t2. We'll pick first-order low-pass
filters for these weights. We use a higher weight (better tracking) for t1 because physical
considerations lead us to believe that t1 is easier to control than t2.
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Wt1perf = tf(100,[400,1]);    % t1 tracking error weight
Wt2perf = tf(50,[800,1]);    % t2 tracking error weight

clf
bodemag(Wt1perf,Wt2perf)
title('Frequency-dependent penalty on setpoint tracking errors')
legend('t1','t2')

Figure 9: Frequency-dependent penalty on setpoint tracking errors.

The reference (setpoint) weights reflect the frequency contents of such commands. Because the
majority of the water flowing into tank 2 comes from tank 1, changes in t2 are dominated by changes
in t1. Also t2 is normally commanded to a value close to t1. So it makes more sense to use setpoint
weighting expressed in terms of t1 and t2-t1:

  t1cmd = Wt1cmd * w1

  t2cmd = Wt1cmd * w1 + Wtdiffcmd * w2

where w1, w2 are white noise inputs. Adequate weight choices are:

Wt1cmd = zpk(0.1);               % t1 input command weight
Wtdiffcmd = zpk(0.01);           % t2 - t1  input command weight

Finally, we would like to penalize both the amplitude and the rate of the actuator. We do this by
weighting fhc (and fcc) with a function that rolls up at high frequencies. Alternatively, we can
create an actuator model with fh and d|fh|/dt as outputs, and weight each output separately with
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constant weights. This approach has the advantage of reducing the number of states in the weighted
open-loop model.

Whact =  zpk(0.01);  % Hot actuator penalty
Wcact =  zpk(0.01);  % Cold actuator penalty

Whrate = zpk(50);    % Hot actuator rate penalty
Wcrate = zpk(50);    % Cold actuator rate penalty

Building a Weighted Open-Loop Model

Now that we have modeled all plant components and selected our design weights, we'll use the
connect function to build an uncertain model of the weighted open-loop model shown in Figure 8.

inputs = {'t1cmd', 'tdiffcmd', 't1noise', 't2noise', 'fhc', 'fcc'};
outputs = {'y_Wt1perf', 'y_Wt2perf', 'y_Whact', 'y_Wcact', ...
             'y_Whrate', 'y_Wcrate', 'y_Wt1cmd', 'y_t1diffcmd', ...
                                           'y_t1Fn', 'y_t2Fn'};

hot_act.InputName = 'fhc'; hot_act.OutputName = {'fh' 'fh_rate'};
cold_act.InputName = 'fcc'; cold_act.OutputName = {'fc' 'fc_rate'};

tank1and2u.InputName = {'fh','fc'};
tank1and2u.OutputName = {'t1','t2'};

t1F.InputName = 't1'; t1F.OutputName = 'y_t1F';
t2F.InputName = 't2'; t2F.OutputName = 'y_t2F';

Wt1cmd.InputName = 't1cmd'; Wt1cmd.OutputName = 'y_Wt1cmd';
Wtdiffcmd.InputName = 'tdiffcmd'; Wtdiffcmd.OutputName = 'y_Wtdiffcmd';

Whact.InputName = 'fh'; Whact.OutputName = 'y_Whact';
Wcact.InputName = 'fc'; Wcact.OutputName = 'y_Wcact';

Whrate.InputName = 'fh_rate'; Whrate.OutputName = 'y_Whrate';
Wcrate.InputName = 'fc_rate'; Wcrate.OutputName = 'y_Wcrate';

Wt1perf.InputName = 'u_Wt1perf'; Wt1perf.OutputName = 'y_Wt1perf';
Wt2perf.InputName = 'u_Wt2perf'; Wt2perf.OutputName = 'y_Wt2perf';

Wt1noise.InputName = 't1noise'; Wt1noise.OutputName = 'y_Wt1noise';
Wt2noise.InputName = 't2noise'; Wt2noise.OutputName = 'y_Wt2noise';

sum1 = sumblk('y_t1diffcmd = y_Wt1cmd + y_Wtdiffcmd');
sum2 = sumblk('y_t1Fn = y_t1F + y_Wt1noise');
sum3 = sumblk('y_t2Fn = y_t2F + y_Wt2noise');
sum4 = sumblk('u_Wt1perf = y_Wt1cmd - t1');
sum5 = sumblk('u_Wt2perf = y_Wtdiffcmd + y_Wt1cmd - t2');

% This produces the uncertain state-space model
P = connect(tank1and2u,hot_act,cold_act,t1F,t2F,Wt1cmd,Wtdiffcmd,Whact, ...
                Wcact,Whrate,Wcrate,Wt1perf,Wt2perf,Wt1noise,Wt2noise, ...
                   sum1,sum2,sum3,sum4,sum5,inputs,outputs);

disp('Weighted open-loop model: ')
P
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Weighted open-loop model: 

P =

  Uncertain continuous-time state-space model with 10 outputs, 6 inputs, 18 states.
  The model uncertainty consists of the following blocks:
    delta1: Uncertain 1x1 LTI, peak gain = 1, 1 occurrences
    delta2: Uncertain 1x1 LTI, peak gain = 1, 1 occurrences
    delta3: Uncertain 1x1 LTI, peak gain = 1, 1 occurrences

Type "P.NominalValue" to see the nominal value, "get(P)" to see all properties, and "P.Uncertainty" to interact with the uncertain elements.

H-infinity Controller Design

By constructing the weights and weighted open loop of Figure 8, we have recast the control problem
as a closed-loop gain minimization. Now we can easily compute a gain-minimizing control law for the
nominal tank models:

nmeas = 4;        % Number of measurements
nctrls = 2;        % Number of controls
[k0,g0,gamma0] = hinfsyn(P.NominalValue,nmeas,nctrls);
gamma0

gamma0 =

    0.9016

The smallest achievable closed-loop gain is about 0.9, which shows us that our frequency-domain
tracking performance specifications are met by the controller k0. Simulating this design in the time
domain is a reasonable way to check that we have correctly set the performance weights. First, we
create a closed-loop model mapping the input signals [ t1ref; t2ref; t1noise; t2noise] to the
output signals [ h1; t1; t2; fhc; fcc]:

inputs = {'t1ref', 't2ref', 't1noise', 't2noise', 'fhc', 'fcc'};
outputs = {'y_tank1', 'y_tank2', 'fhc', 'fcc', 'y_t1ref', 'y_t2ref', ...
                'y_t1Fn', 'y_t2Fn'};

hot_act(1).InputName = 'fhc'; hot_act(1).OutputName = 'y_hot_act';
cold_act(1).InputName = 'fcc'; cold_act(1).OutputName = 'y_cold_act';

tank1nom.InputName = [hot_act(1).OutputName cold_act(1).OutputName];
tank1nom.OutputName = 'y_tank1';
tank2nom.InputName = tank1nom.OutputName;
tank2nom.OutputName = 'y_tank2';

t1F.InputName = tank1nom.OutputName(2); t1F.OutputName = 'y_t1F';
t2F.InputName = tank2nom.OutputName; t2F.OutputName = 'y_t2F';

I_tref = zpk(eye(2));
I_tref.InputName = {'t1ref', 't2ref'}; I_tref.OutputName = {'y_t1ref', 'y_t2ref'};

sum1 = sumblk('y_t1Fn = y_t1F + t1noise');
sum2 = sumblk('y_t2Fn = y_t2F + t2noise');

simlft = connect(tank1nom,tank2nom,hot_act(1),cold_act(1),t1F,t2F,I_tref,sum1,sum2,inputs,outputs);
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% Close the loop with the H-infinity controller |k0|
sim_k0 = lft(simlft,k0);
sim_k0.InputName = {'t1ref'; 't2ref'; 't1noise'; 't2noise'};
sim_k0.OutputName = {'h1'; 't1'; 't2'; 'fhc'; 'fcc'};

Now we simulate the closed-loop response when ramping down the setpoints for t1 and t2 between
80 seconds and 100 seconds:

time=0:800;
t1ref = (time>=80 & time<100).*(time-80)*-0.18/20 + ...
    (time>=100)*-0.18;
t2ref = (time>=80 & time<100).*(time-80)*-0.2/20 + ...
    (time>=100)*-0.2;
t1noise = Wt1noise.k * randn(size(time));
t2noise = Wt2noise.k * randn(size(time));

y = lsim(sim_k0,[t1ref ; t2ref ; t1noise ; t2noise],time);

Next, we add the simulated outputs to their steady state values and plot the responses:

h1 = h1ss+y(:,1);
t1 = t1ss+y(:,2);
t2 = t2ss+y(:,3);
fhc = fhss/fs+y(:,4); % Note scaling to actuator
fcc = fcss/fs+y(:,5); % Limits (0<= fhc <= 1) etc.

In this code, we plot the outputs, t1 and t2, as well as the height h1 of tank 1:

plot(time,h1,'--',time,t1,'-',time,t2,'-.');
xlabel('Time (sec)')
ylabel('Measurements')
title('Step Response of H-infinity Controller k0')
legend('h1','t1','t2');
grid
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Figure 10: Step response of H-infinity controller k0.

Next we plot the commands to the hot and cold actuators.

plot(time,fhc,'-',time,fcc,'-.');
xlabel('Time: seconds')
ylabel('Actuators')
title('Actuator Commands for H-infinity Controller k0')
legend('fhc','fcc');
grid
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Figure 11: Actuator commands for H-infinity controller k0.

Robustness of the H-infinity Controller

The H-infinity controller k0 is designed for the nominal tank models. Let's look at how well its fares
for perturbed model within the model uncertainty bounds. We can compare the nominal closed-loop
performance gamma0 with the worst-case performance over the model uncertainty set. (see
"Uncertainty on Model Dynamics" for more information.)

clpk0 = lft(P,k0);

% Compute and plot worst-case gain
wcsigmaplot(clpk0,{1e-4,1e2})
ylim([-20 10])
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Figure 12: Performance analysis for controller k0.

The worst-case performance of the closed-loop is significantly worse than the nominal performance
which tells us that the H-infinity controller k0 is not robust to modeling errors.

Mu Controller Synthesis

To remedy this lack of robustness, we will use musyn to design a controller that takes into account
modeling uncertainty and delivers consistent performance for the nominal and perturbed models.

[kmu,bnd] = musyn(P,nmeas,nctrls);

D-K ITERATION SUMMARY:
-----------------------------------------------------------------
                       Robust performance               Fit order
-----------------------------------------------------------------
  Iter         K Step       Peak MU       D Fit             D
    1           8.814        2.862        2.888             4
    2           2.494        2.088        2.109            10
    3           1.354        1.331        1.339            10
    4           1.201        1.199        1.209            22
    5           1.194        1.191        1.198            20
    6           1.192         1.19        1.193            20

Best achieved robust performance: 1.19
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As before, we can simulate the closed-loop responses with the controller kmu

sim_kmu = lft(simlft,kmu);
y = lsim(sim_kmu,[t1ref;t2ref;t1noise;t2noise],time);
h1 = h1ss+y(:,1);
t1 = t1ss+y(:,2);
t2 = t2ss+y(:,3);
fhc = fhss/fs+y(:,4); % Note scaling to actuator
fcc = fcss/fs+y(:,5); % Limits (0<= fhc <= 1) etc.

% Plot |t1| and |t2| as well as the height |h1| of tank 1
plot(time,h1,'--',time,t1,'-',time,t2,'-.');
xlabel('Time: seconds')
ylabel('Measurements')
title('Step Response of mu Controller kmu')
legend('h1','t1','t2');
grid

Figure 13: Step response of mu controller kmu.

These time responses are comparable with those for k0, and show only a slight performance
degradation. However, kmu fares better regarding robustness to unmodeled dynamics.

% Worst-case performance for kmu
clpmu = lft(P,kmu);
wcsigmaplot(clpmu,{1e-4,1e2})
ylim([-20 10])
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Figure 14: Performance analysis for controller kmu.

You can use wcgain to directly compute the worst-case gain across frequency (worst-case peak gain
or worst-case H-infinity norm). You can also compute its sensitivity to each uncertain element. Results
show that the worst-case peak gain is most sensitive to changes in the range of delta2.

opt = wcOptions('Sensitivity','on');
[wcg,wcu,wcinfo] = wcgain(clpmu,opt);
wcg

wcg = 

  struct with fields:

           LowerBound: 1.3165
           UpperBound: 1.3193
    CriticalFrequency: 0

wcinfo.Sensitivity

ans = 

  struct with fields:

    delta1: 0
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    delta2: 60
    delta3: 10

See Also
hinfsyn | musyn | wcgain

More About
• “H-Infinity Performance”
• “Robust Controller Design Using Mu Synthesis” on page 3-2
• “Simultaneous Stabilization Using Robust Control” on page 3-54
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Simultaneous Stabilization Using Robust Control
This example uses the Robust Control Toolbox™ commands ucover and musyn to design a high-
performance controller for a family of unstable plants.

Plant Uncertainty

The nominal plant model consists of a first-order unstable system.

Pnom = tf(2,[1 -2]);

The family of perturbed plants are variations of Pnom. All plants have a single unstable pole but the
location of this pole varies across the family.

p1 = Pnom*tf(1,[.06 1]);              % extra lag
p2 = Pnom*tf([-.02 1],[.02 1]);       % time delay
p3 = Pnom*tf(50^2,[1 2*.1*50 50^2]);  % high frequency resonance
p4 = Pnom*tf(70^2,[1 2*.2*70 70^2]);  % high frequency resonance
p5 = tf(2.4,[1 -2.2]);                % pole/gain migration
p6 = tf(1.6,[1 -1.8]);                % pole/gain migration

Covering the Uncertain Model

For feedback design purposes, we need to replace this set of models with a single uncertain plant
model whose range of behaviors includes p1 through p6. This is one use of the command ucover.
This command takes an array of LTI models Parray and a nominal model Pnom and models the
difference Parray-Pnom as multiplicative uncertainty in the system dynamics.

Because ucover expects an array of models, use the stack command to gather the plant models p1
through p6 into one array.

Parray = stack(1,p1,p2,p3,p4,p5,p6);

Next, use ucover to "cover" the range of behaviors Parray with an uncertain model of the form

P = Pnom * (1 + Wt * Delta)

where all uncertainty is concentrated in the "unmodeled dynamics" Delta (a ultidyn object).
Because the gain of Delta is uniformly bounded by 1 at all frequencies, a "shaping" filter Wt is used
to capture how the relative amount of uncertainty varies with frequency. This filter is also referred to
as the uncertainty weighting function. Try a 4th-order filter Wt for this example:

orderWt = 4;
Parrayg = frd(Parray,logspace(-1,3,60));
[P,Info] = ucover(Parrayg,Pnom,orderWt,'InputMult');

The resulting model P is a single-input, single-output uncertain state-space (USS) object with nominal
value Pnom.

P

P =

  Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 5 states.
  The model uncertainty consists of the following blocks:
    Parrayg_InputMultDelta: Uncertain 1x1 LTI, peak gain = 1, 1 occurrences

Type "P.NominalValue" to see the nominal value, "get(P)" to see all properties, and "P.Uncertainty" to interact with the uncertain elements.
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tf(P.NominalValue)

ans =
 
    2
  -----
  s - 2
 
Continuous-time transfer function.

A Bode magnitude plot confirms that the shaping filter Wt "covers" the relative variation in plant
behavior. As a function of frequency, the uncertainty level is 30% at 5 rad/sec (-10dB = 0.3) , 50% at
10 rad/sec, and 100% beyond 29 rad/sec.

Wt = Info.W1;
bodemag((Pnom-Parray)/Pnom,'b--',Wt,'r'); grid
title('Relative Gaps vs. Magnitude of Wt')

Creating the Open-loop Design Model

To design a robust controller for the uncertain plant model P, we choose a desired closed-loop
bandwidth and minimize the sensitivity to disturbances at the plant output. The control structure is
shown below. The signals d and n are the load disturbance and measurement noise. The controller
uses a noisy measurement of the plant output y to generate the control signal u.
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Figure 1: Control Structure.

The filters Wperf and Wnoise are selected to enforce the desired bandwidth and some adequate roll-
off. The closed-loop transfer function from [d;n] to y is

    y = [Wperf * S , Wnoise * T] [d;n]

where S=1/(1+PC) and T=PC/(1+PC) are the sensitivity and complementary sensitivity functions. If
we design a controller that keeps the closed-loop gain from [d;n] to y below 1, then

    |S| < 1/|Wperf| ,    |T| < 1/|Wnoise|

By choosing appropriate magnitude profiles for Wperf and Wnoise, we can enforce small sensitivity
(S) inside the bandwidth and adequate roll-off (T) outside the bandwidth.

For example, choose Wperf as a first-order low-pass filter with a DC gain of 500 and a gain crossover
at the desired bandwidth desBW:

desBW = 4.5;
Wperf = makeweight(500,desBW,0.33);
tf(Wperf)

ans =
 
  0.33 s + 4.248
  --------------
   s + 0.008496
 
Continuous-time transfer function.

Similarly, pick Wnoise as a second-order high-pass filter with a magnitude of 1 at 10*desBW. This
will force the open-loop gain PC to roll-off with a slope of -2 for frequencies beyond 10*desBW.

NF = (10*desBW)/20;  % numerator corner frequency
DF = (10*desBW)*50;  % denominator corner frequency
Wnoise = tf([1/NF^2  2*0.707/NF  1],[1/DF^2  2*0.707/DF  1]);
Wnoise = Wnoise/abs(freqresp(Wnoise,10*desBW))
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Wnoise =
 
    0.1975 s^2 + 0.6284 s + 1
  ------------------------------
  7.901e-05 s^2 + 0.2514 s + 400
 
Continuous-time transfer function.

Verify that the bounds 1/Wperf and 1/Wnoise on S and T do enforce the desired bandwidth and roll-
off.

bodemag(1/Wperf,'b',1/Wnoise,'r',{1e-2,1e3}), grid
title('Performance and roll-off specifications')
legend('Bound on |S|','Bound on |T|','Location','NorthEast')

Next use connect to build the open-loop interconnection (block diagram in Figure 1 without the
controller block). Specify each block appearing in Figure 1, name the signals coming in and out of
each block, and let connect do the wiring:

P.u = 'u';   P.y = 'yp';
Wperf.u = 'd';   Wperf.y = 'Wperf';
Wnoise.u = 'n';  Wnoise.y = 'Wnoise';
S1 = sumblk('e = -ym');
S2 = sumblk('y = yp + Wperf');
S3 = sumblk('ym = y + Wnoise');
G = connect(P,Wperf,Wnoise,S1,S2,S3,{'d','n','u'},{'y','e'});

G is a 3-input, 2-output uncertain system suitable for robust controller synthesis with musyn.
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Robust Controller Synthesis

The design is carried out with the automated robust design command musyn. The target bandwidth is
4.5 rad/s.

ny = 1; nu = 1;
[C,muPerf] = musyn(G,ny,nu);

D-K ITERATION SUMMARY:
-----------------------------------------------------------------
                       Robust performance               Fit order
-----------------------------------------------------------------
  Iter         K Step       Peak MU       D Fit             D
    1           353.6        249.5        251.9             0
    2           70.74        9.965        10.05             4
    3           1.981        1.601        1.619             8
    4           1.159        1.159         1.18            10
    5           1.089        1.089        1.098            10
    6           1.046        1.046        1.051             8
    7           1.025        1.025        1.033             8
    8           1.015        1.015        1.022             8
    9           1.013        1.013        1.017             8
   10           1.011        1.011        1.026            10

Best achieved robust performance: 1.01

When the robust performance indicator muPerf is near 1, the controller achieves the target closed-
loop bandwidth and roll-off. As a rule of thumb, if muPerf is less than 0.85, then the performance can
be improved upon, and if muPerf is greater than 1.2, then the desired closed-loop bandwidth is not
achievable for the specified plant uncertainty.

Here muPerf is approximately 1 so the objectives are met. The resulting controller C has 18 states:

size(C)

State-space model with 1 outputs, 1 inputs, and 16 states.

You can use the reduce and musynperf commands to simplify this controller. Compute
approximations of orders 1 through 17.

NxC = order(C);
Cappx = reduce(C,1:NxC);

For each reduced-order controller, use musynperf to compute the robust performance indicator and
compare it with muPerf. Keep the lowest-order controller with performance no worse than 1.05 *
muPerf, a performance degradation of 5% or less.

for k=1:NxC
   Cr = Cappx(:,:,k);  % controller of order k
   bnd = musynperf(lft(G,Cr));
   if bnd.UpperBound < 1.05 * muPerf
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      break % abort with the first controller meeting the performance goal
   end
end

order(Cr)

ans = 6

This yields a 6th-order controller Cr with comparable performance. Compare Cr with the full-order
controller C.

opt = bodeoptions;
opt.Grid = 'on';
opt.PhaseMatching = 'on';
bodeplot(C,'b',Cr,'r--',opt)
legend('Full-order C','Reduced-order Cr','Location','NorthEast')

Robust Controller Validation

Plot the open-loop responses of the plant models p1 through p6 with the simplified controller Cr.

bodeplot(Parray*Cr,'g',{1e-2,1e3},opt);
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Plot the responses to a step disturbance at the plant output. These are consistent with the desired
closed-loop bandwidth and robust to the plant variations, as expected from a Robust Performance mu-
value of approximately 1.

step(feedback(1,Parray*Cr),'g',10/desBW);
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Varying the Target Closed-Loop Bandwidth

The same design process can be repeated for different closed-loop bandwidth values desBW. Doing so
yields the following results:

• Using desBW = 8 yields a good design with robust performance muPerf of 1.09. The step
responses across the Parray family are consistent with a closed-loop bandwidth of 8 rad/s.

• Using desBW = 20 yields a poor design with robust performance muPerf of 1.35. This is expected
because this target bandwidth is in the vicinity of very large plant uncertainty. Some of the step
responses for the plants p1,...,p6 are actually unstable.

• Using desBW = 0.3 yields a poor design with robust performance muPerf of 2.2. This is expected
because Wnoise imposes roll-off past 3 rad/s, which is too close to the natural frequency of the
unstable pole (2 rad/s). In other words, proper control of the unstable dynamics requires a higher
bandwidth than specified.

See Also
makeweight | musyn | ucover

More About
• “Robust Controller Design Using Mu Synthesis” on page 3-2
• “Control of Aircraft Lateral Axis Using Mu Synthesis” on page 3-62
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Control of Aircraft Lateral Axis Using Mu Synthesis
This example shows how to use mu-analysis and synthesis tools in the Robust Control Toolbox™. It
describes the design of a robust controller for the lateral-directional axis of an aircraft during
powered approach to landing. The linearized model of the aircraft is obtained for an angle-of-attack of
10.5 degrees and airspeed of 140 knots.

Performance Specifications

The illustration below shows a block diagram of the closed-loop system. The diagram includes the
nominal aircraft model, the controller K, as well as elements capturing the model uncertainty and
performance objectives (see next sections for details).

Figure 1: Robust Control Design for Aircraft Lateral Axis

The design goal is to make the airplane respond effectively to the pilot's lateral stick and rudder
pedal inputs. The performance specifications include:

• Decoupled responses from lateral stick p_cmd to roll rate p and from rudder pedals beta_cmd to
side-slip angle beta. The lateral stick and rudder pedals have a maximum deflection of +/- 1 inch.

• The aircraft handling quality (HQ) response from lateral stick to roll rate p should match the first-
order response.

HQ_p    = 5.0 * tf(2.0,[1 2.0]);
step(HQ_p), title('Desired response from lateral stick to roll rate (Handling Quality)')
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Figure 2: Desired response from lateral stick to roll rate.

• The aircraft handling quality response from the rudder pedals to the side-slip angle beta should
match the damped second-order response.

HQ_beta = -2.5 * tf(1.25^2,[1 2.5 1.25^2]);
step(HQ_beta), title('Desired response from rudder pedal to side-slip angle (Handling Quality)')

 Control of Aircraft Lateral Axis Using Mu Synthesis

3-63



Figure 3: Desired response from rudder pedal to side-slip angle.

• The stabilizer actuators have +/- 20 deg and +/- 50 deg/s limits on their deflection angle and
deflection rate. The rudder actuators have +/- 30 deg and +/-60 deg/s deflection angle and rate
limits.

• The three measurement signals ( roll rate p, yaw rate r, and lateral acceleration yac ) are filtered
through second-order anti-aliasing filters:

freq = 12.5 * (2*pi);  % 12.5 Hz
zeta = 0.5;
yaw_filt = tf(freq^2,[1 2*zeta*freq freq^2]);
lat_filt = tf(freq^2,[1 2*zeta*freq freq^2]);

freq = 4.1 * (2*pi);  % 4.1 Hz
zeta = 0.7;
roll_filt = tf(freq^2,[1 2*zeta*freq freq^2]);

AAFilters = append(roll_filt,yaw_filt,lat_filt);

From Specs to Weighting Functions

H-infinity design algorithms seek to minimize the largest closed-loop gain across frequency (H-infinity
norm). To apply these tools, we must first recast the design specifications as constraints on the
closed-loop gains. We use weighting functions to "normalize" the specifications across frequency
and to equally weight each requirement.

We can express the design specs in terms of weighting functions as follows:
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• To capture the limits on the actuator deflection magnitude and rate, pick a diagonal, constant
weight W_act, corresponding to the stabilizer and rudder deflection rate and deflection angle
limits.

W_act = ss(diag([1/50,1/20,1/60,1/30]));

• Use a 3x3 diagonal, high-pass filter W_n to model the frequency content of the sensor noise in the
roll rate, yaw rate, and lateral acceleration channels.

W_n = append(0.025,tf(0.0125*[1 1],[1 100]),0.025);
clf, bodemag(W_n(2,2)), title('Sensor noise power as a function of frequency')

Figure 4: Sensor noise power as a function of frequency

• The response from lateral stick to p and from rudder pedal to beta should match the handling
quality targets HQ_p and HQ_beta. This is a model-matching objective: to minimize the difference
(peak gain) between the desired and actual closed-loop transfer functions. Performance is limited
due to a right-half plane zero in the model at 0.002 rad/s, so accurate tracking of sinusoids below
0.002 rad/s is not possible. Accordingly, we'll weight the first handling quality spec with a
bandpass filter W_p that emphasizes the frequency range between 0.06 and 30 rad/sec.

W_p = tf([0.05 2.9 105.93 6.17 0.16],[1 9.19 30.80 18.83 3.95]);
clf, bodemag(W_p), title('Weight on Handling Quality spec')
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Figure 5: Weight on handling quality spec.

• Similarly, pick W_beta=2*W_p for the second handling quality spec

W_beta = 2*W_p;

Here we scaled the weights W_act, W_n, W_p, and W_beta so the closed-loop gain between all
external inputs and all weighted outputs is less than 1 at all frequencies.

Nominal Aircraft Model

A pilot can command the lateral-directional response of the aircraft with the lateral stick and rudder
pedals. The aircraft has the following characteristics:

• Two control inputs: differential stabilizer deflection delta_stab in degrees, and rudder
deflection delta_rud in degrees.

• Three measured outputs: roll rate p in deg/s, yaw rate r in deg/s, and lateral acceleration yac in
g's.

• One calculated output: side-slip angle beta.

The nominal lateral directional model LateralAxis has four states:

• Lateral velocity v
• Yaw rate r
• Roll rate p

3 Mu Synthesis

3-66



• Roll angle phi

These variables are related by the state space equations:

ẋ = Ax + Bu, y = Cx + Du

where x = [v; r; p; phi], u = [delta_stab; delta_rud], and y = [beta; p; r; yac].

load LateralAxisModel
LateralAxis

LateralAxis =
 
  A = 
               v         r         p       phi
   v      -0.116    -227.3     43.02     31.63
   r     0.00265    -0.259   -0.1445         0
   p    -0.02114    0.6703    -1.365         0
   phi         0    0.1853         1         0
 
  B = 
        delta_stab   delta_rud
   v        0.0622      0.1013
   r     -0.005252    -0.01121
   p      -0.04666    0.003644
   phi           0           0
 
  C = 
                 v          r          p        phi
   beta     0.2469          0          0          0
   p             0          0       57.3          0
   r             0       57.3          0          0
   yac   -0.002827  -0.007877    0.05106          0
 
  D = 
         delta_stab   delta_rud
   beta           0           0
   p              0           0
   r              0           0
   yac     0.002886    0.002273
 
Continuous-time state-space model.

The complete airframe model also includes actuators models A_S and A_R. The actuator outputs are
their respective deflection rates and angles. The actuator rates are used to penalize the actuation
effort.

A_S = [tf([25 0],[1 25]); tf(25,[1 25])];
A_S.OutputName = {'stab_rate','stab_angle'};

A_R = A_S;
A_R.OutputName = {'rud_rate','rud_angle'};

Accounting for Modeling Errors

The nominal model only approximates true airplane behavior. To account for unmodeled dynamics,
you can introduce a relative term or multiplicative uncertainty W_in*Delta_G at the plant input,
where the error dynamics Delta_G have gain less than 1 across frequencies, and the weighting
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function W_in reflects the frequency ranges in which the model is more or less accurate. There are
typically more modeling errors at high frequencies so W_in is high pass.

% Normalized error dynamics
Delta_G = ultidyn('Delta_G',[2 2],'Bound',1.0);

% Frequency shaping of error dynamics
w_1 = tf(2.0*[1 4],[1 160]);
w_2 = tf(1.5*[1 20],[1 200]);
W_in = append(w_1,w_2);

bodemag(w_1,'-',w_2,'--')
title('Relative error on nominal model as a function of frequency')
legend('stabilizer','rudder','Location','NorthWest');

Figure 6: Relative error on nominal aircraft model as a function of frequency.

Building an Uncertain Model of the Aircraft Dynamics

Now that we have quantified modeling errors, we can build an uncertain model of the aircraft
dynamics corresponding to the dashed box in the Figure 7 (same as Figure 1):
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Figure 7: Aircraft dynamics.

Use the connect function to combine the nominal airframe model LateralAxis, the actuator
models A_S and A_R, and the modeling error description W_in*Delta_G into a single uncertain
model Plant_unc mapping [delta_stab; delta_rud] to the actuator and plant outputs:

% Actuator model with modeling uncertainty
Act_unc = append(A_S,A_R) * (eye(2) + W_in*Delta_G);
Act_unc.InputName = {'delta_stab','delta_rud'};

% Nominal aircraft dynamics
Plant_nom = LateralAxis;
Plant_nom.InputName = {'stab_angle','rud_angle'};

% Connect the two subsystems
Inputs = {'delta_stab','delta_rud'};
Outputs = [A_S.y ; A_R.y ; Plant_nom.y];
Plant_unc = connect(Plant_nom,Act_unc,Inputs,Outputs);

This produces an uncertain state-space (USS) model Plant_unc of the aircraft:

Plant_unc

Plant_unc =

  Uncertain continuous-time state-space model with 8 outputs, 2 inputs, 8 states.
  The model uncertainty consists of the following blocks:
    Delta_G: Uncertain 2x2 LTI, peak gain = 1, 1 occurrences

Type "Plant_unc.NominalValue" to see the nominal value, "get(Plant_unc)" to see all properties, and "Plant_unc.Uncertainty" to interact with the uncertain elements.
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Analyzing How Modeling Errors Affect Open-Loop Responses

We can analyze the effect of modeling uncertainty by picking random samples of the unmodeled
dynamics Delta_G and plotting the nominal and perturbed time responses (Monte Carlo analysis).
For example, for the differential stabilizer channel, the uncertainty weight w_1 implies a 5% modeling
error at low frequency, increasing to 100% after 93 rad/sec, as confirmed by the Bode diagram below.

% Pick 10 random samples
Plant_unc_sampl = usample(Plant_unc,10);

% Look at response from differential stabilizer to beta
figure('Position',[100,100,560,500]) 
subplot(211), step(Plant_unc.Nominal(5,1),'r+',Plant_unc_sampl(5,1),'b-',10)
legend('Nominal','Perturbed')

subplot(212), bodemag(Plant_unc.Nominal(5,1),'r+',Plant_unc_sampl(5,1),'b-',{0.001,1e3})
legend('Nominal','Perturbed')

Figure 8: Step response and Bode diagram.
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Designing the Lateral-Axis Controller

Proceed with designing a controller that robustly achieves the specifications, where robustly means
for any perturbed aircraft model consistent with the modeling error bounds W_in.

First we build an open-loop model OLIC mapping the external input signals to the performance-
related outputs as shown below.

Figure 9: Open-loop model mapping external input signals to performance-related outputs.

To build this model, start with the block diagram of the closed-loop system, remove the controller
block K, and use connect to compute the desired model. As before, the connectivity is specified by
labeling the inputs and outputs of each block.

Figure 10: Block diagram for building open-loop model.

% Label block I/Os
AAFilters.u = {'p','r','yac'};    AAFilters.y = 'AAFilt';
W_n.u = 'noise';                  W_n.y = 'Wn';
HQ_p.u = 'p_cmd';                 HQ_p.y = 'HQ_p';
HQ_beta.u = 'beta_cmd';           HQ_beta.y = 'HQ_beta';
W_p.u = 'e_p';                    W_p.y = 'z_p';

 Control of Aircraft Lateral Axis Using Mu Synthesis

3-71



W_beta.u = 'e_beta';              W_beta.y = 'z_beta';
W_act.u = [A_S.y ; A_R.y];        W_act.y = 'z_act';

% Specify summing junctions
Sum1 = sumblk('%meas = AAFilt + Wn',{'p_meas','r_meas','yac_meas'});
Sum2 = sumblk('e_p = HQ_p - p');
Sum3 = sumblk('e_beta = HQ_beta - beta');

% Connect everything
OLIC = connect(Plant_unc,AAFilters,W_n,HQ_p,HQ_beta,...
   W_p,W_beta,W_act,Sum1,Sum2,Sum3,...
   {'noise','p_cmd','beta_cmd','delta_stab','delta_rud'},...
   {'z_p','z_beta','z_act','p_cmd','beta_cmd','p_meas','r_meas','yac_meas'});

This produces the uncertain state-space model

OLIC

OLIC =

  Uncertain continuous-time state-space model with 11 outputs, 7 inputs, 26 states.
  The model uncertainty consists of the following blocks:
    Delta_G: Uncertain 2x2 LTI, peak gain = 1, 1 occurrences

Type "OLIC.NominalValue" to see the nominal value, "get(OLIC)" to see all properties, and "OLIC.Uncertainty" to interact with the uncertain elements.

Recall that by construction of the weighting functions, a controller meets the specs whenever the
closed-loop gain is less than 1 at all frequencies and for all I/O directions. First design an H-infinity
controller that minimizes the closed-loop gain for the nominal aircraft model:

nmeas = 5;        % number of measurements
nctrls = 2;        % number of controls
[kinf,~,gamma_inf] = hinfsyn(OLIC.NominalValue,nmeas,nctrls);
gamma_inf

gamma_inf = 0.9700

Here hinfsyn computed a controller kinf that keeps the closed-loop gain below 1 so the specs can
be met for the nominal aircraft model.

Next, perform a mu-synthesis to see if the specs can be met robustly when taking into account the
modeling errors (uncertainty Delta_G). Use the command musyn to perform the synthesis and use
musynOptions to set the frequency grid used for mu-analysis.

fmu = logspace(-2,2,60);
opt = musynOptions('FrequencyGrid',fmu);
[kmu,CLperf] = musyn(OLIC,nmeas,nctrls,opt);

D-K ITERATION SUMMARY:
-----------------------------------------------------------------
                       Robust performance               Fit order
-----------------------------------------------------------------
  Iter         K Step       Peak MU       D Fit             D
    1           5.097        3.487        3.488            12
    2            1.31        1.292        1.312            20
    3           1.242        1.242        1.693            12
    4           1.693        1.544        1.545            16
    5           1.223        1.223        1.551            12
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    6           1.533        1.464        1.465            20
    7           1.287        1.286        1.303            12

Best achieved robust performance: 1.22

CLperf

CLperf = 1.2225

Here the best controller kmu cannot keep the closed-loop gain below 1 for the specified model
uncertainty, indicating that the specs can be nearly but not fully met for the family of aircraft models
under consideration.

Frequency-Domain Comparison of Controllers

Compare the performance and robustness of the H-infinity controller kinf and mu controller kmu.
Recall that the performance specs are achieved when the closed loop gain is less than 1 for every
frequency. Use the lft function to close the loop around each controller:

clinf = lft(OLIC,kinf);
clmu = lft(OLIC,kmu);

What is the worst-case performance (in terms of closed-loop gain) of each controller for modeling
errors bounded by W_in? The wcgain command helps you answer this difficult question directly
without need for extensive gridding and simulation.

% Compute worst-case gain as a function of frequency
opt = wcOptions('VaryFrequency','on');

% Compute worst-case gain (as a function of frequency) for kinf
[mginf,wcuinf,infoinf] = wcgain(clinf,opt);

% Compute worst-case gain for kmu
[mgmu,wcumu,infomu] = wcgain(clmu,opt);

You can now compare the nominal and worst-case performance for each controller:

clf
subplot(211)
f = infoinf.Frequency;
gnom = sigma(clinf.NominalValue,f);
semilogx(f,gnom(1,:),'r',f,infoinf.Bounds(:,2),'b');
title('Performance analysis for kinf')
xlabel('Frequency (rad/sec)')
ylabel('Closed-loop gain');
xlim([1e-2 1e2])
legend('Nominal Plant','Worst-Case','Location','NorthWest');

subplot(212)
f = infomu.Frequency;
gnom = sigma(clmu.NominalValue,f);
semilogx(f,gnom(1,:),'r',f,infomu.Bounds(:,2),'b');
title('Performance analysis for kmu')
xlabel('Frequency (rad/sec)')
ylabel('Closed-loop gain');
xlim([1e-2 1e2])
legend('Nominal Plant','Worst-Case','Location','SouthWest');
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The first plot shows that while the H-infinity controller kinf meets the performance specs for the
nominal plant model, its performance can sharply deteriorate (peak gain near 15) for some perturbed
model within our modeling error bounds.

In contrast, the mu controller kmu has slightly worse performance for the nominal plant when
compared to kinf, but it maintains this performance consistently for all perturbed models (worst-
case gain near 1.25). The mu controller is therefore more robust to modeling errors.

Time-Domain Validation of the Robust Controller

To further test the robustness of the mu controller kmu in the time domain, you can compare the time
responses of the nominal and worst-case closed-loop models with the ideal "Handling Quality"
response. To do this, first construct the "true" closed-loop model CLSIM where all weighting functions
and HQ reference models have been removed:

kmu.u = {'p_cmd','beta_cmd','p_meas','r_meas','yac_meas'};
kmu.y = {'delta_stab','delta_rud'};

AAFilters.y = {'p_meas','r_meas','yac_meas'};

CLSIM = connect(Plant_unc(5:end,:),AAFilters,kmu,{'p_cmd','beta_cmd'},{'p','beta'});
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Next, create the test signals u_stick and u_pedal shown below

time = 0:0.02:15;
u_stick = (time>=9 & time<12);
u_pedal = (time>=1 & time<4) - (time>=4 & time<7);

clf
subplot(211), plot(time,u_stick), axis([0 14 -2 2]), title('Lateral stick command')
subplot(212), plot(time,u_pedal), axis([0 14 -2 2]), title('Rudder pedal command')

You can now compute and plot the ideal, nominal, and worst-case responses to the test commands
u_stick and u_pedal.

% Ideal behavior
IdealResp = append(HQ_p,HQ_beta);
IdealResp.y = {'p','beta'};

% Worst-case response
WCResp = usubs(CLSIM,wcumu);

% Compare responses
clf
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lsim(IdealResp,'g',CLSIM.NominalValue,'r',WCResp,'b:',[u_stick ; u_pedal],time)
legend('ideal','nominal','perturbed','Location','SouthEast');
title('Closed-loop responses with mu controller KMU')

The closed-loop response is nearly identical for the nominal and worst-case closed-loop systems. Note
that the roll-rate response of the aircraft tracks the roll-rate command well initially and then departs
from this command. This is due to a right-half plane zero in the aircraft model at 0.024 rad/sec.

See Also
hinfsyn | musyn

More About
• “Robust Controller Design Using Mu Synthesis” on page 3-2
• “H-Infinity Performance”
• “Control of a Spring-Mass-Damper System Using Mixed-Mu Synthesis” on page 3-77
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Control of a Spring-Mass-Damper System Using Mixed-Mu
Synthesis

This example shows how to perform mixed-mu synthesis with the musyn command in the Robust
Control Toolbox™. Here musyn is used to design a robust controller for a two mass-spring-damper
system with uncertainty in the spring stiffness connecting the two masses. This example is taken from
the paper "Robust mixed-mu synthesis performance for mass-spring system with stiffness
uncertainty," D. Barros, S. Fekri and M. Athans, 2005 Mediterranean Control Conference.

Performance Specifications

Consider the mass-spring-damper system in Figure 1. Spring k2 and damper b2 are attached to the
wall and mass m2. Mass m2 is also attached to mass m1 through spring k1 and damper b1. Mass 2 is
affected by the disturbance force f2. The system is controlled via force f1 acting on mass m1.

Our design goal is to use the control force f1 to attenuate the effect of the disturbance f2 on the
position of mass m2. The force f1 does not directly act on mass m2, rather it acts through the spring
stiffness k1. Hence any uncertainty in the spring stiffness k1 will make the control problem more
difficult. The control problem is formulated as:

• The controller measures the noisy displacement of mass m2 and applies the control force f1. The
sensor noise, Wn, is modeled as a constant 0.001.

• The actuator command is penalized by a factor 0.1 at low frequency and a factor 10 at high
frequency with a crossover frequency of 100 rad/s (filter Wu).

• The unit magnitude, first-order coloring filter, Wdist, on the disturbance has a pole at 0.25 rad/s.

• The performance objective is to attenuate the disturbance on mass m2 by a factor of 80 below 0.1
rad/s.

The nominal values of the system parameters are m1=1, m2=2, k2=1, b1=0.05, b2=0.05, and k1=2.

Wn = tf(0.001);
Wu = 10*tf([1 10],[1 1000]);
Wdist = tf(0.25,[1 0.25],'inputname','dist','outputname','f2');
Wp = 80*tf(0.1,[1 0.1]);
m1 = 1;
m2 = 2;
k2 = 1;
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b1 = 0.05;
b2 = 0.05;

Uncertainty Modeling

The value of spring stiffness k1 is uncertain. It has a nominal value of 2 and its value can vary
between 1.2 and 2.8.

k1 = ureal('k1',2,'Range',[1.2 2.8]);

There is also a time delay tau between the commanded actuator force f1 and its application to mass
m1. The maximum delay is 0.06 seconds. Neglecting this time delay introduces a multiplicative error
of exp(-s*tau)-1. This error can be treated as unmodeled dynamics bounded in magnitude by the
high-pass filter Wunmod = 2.6*s/(s + 40):

tau = ss(1,'InputDelay',0.06);
Wunmod = 2.6*tf([1 0],[1 40]);
bodemag(tau-1,Wunmod,logspace(0,3,200));
title('Multiplicative Time-Delay Error: Actual vs. Bound')
legend('Actual','Bound','Location','NorthWest')

Construct an uncertain state-space model of the plant with the control force f1 and disturbance f2
as inputs.

a1c = [0 0 -1/m1  1/m2]'*k1;
a2c = [0 0  1/m1 -1/m2]'*k1 + [0 0 0 -k2/m2]';
a3c = [1 0 -b1/m1 b1/m2]';
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a4c = [0 1 b1/m1 -(b1+b2)/m2]';
A  = [a1c a2c a3c a4c];
plant = ss(A,[0 0;0 0;1/m1 0;0 1/m2],[0 1 0 0],[0 0]);
plant.StateName = {'z1';'z2';'z1dot';'z2dot'};
plant.OutputName = {'z2'};

Add the unmodeled delay dynamics at the first plant input.

Delta = ultidyn('Delta',[1 1]);
plant = plant * append(1+Delta*Wunmod,1);
plant.InputName = {'f1','f2'};

Plot the Bode response from f1 to z2 for 20 sample values of the uncertainty. The uncertainty on the
value of k1 causes fluctuations in the natural frequencies of the plant modes.

bode(plant(1,1),{0.1,4})

Control Design

We use the following structure for controller synthesis:
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Figure 2

Use connect to construct the corresponding open-loop interconnection IC. Note that IC is an
uncertain model with uncertain variables k1 and Delta.

Wu.u = 'f1';  Wu.y = 'Wu';
Wp.u = 'z2';  Wp.y = 'Wp';
Wn.u = 'noise';  Wn.y = 'Wn';
S = sumblk('z2n = z2 + Wn');
IC = connect(plant,Wdist,Wu,Wp,Wn,S,{'dist','noise','f1'},{'Wp','Wu','z2n'})

IC =

  Uncertain continuous-time state-space model with 3 outputs, 3 inputs, 8 states.
  The model uncertainty consists of the following blocks:
    Delta: Uncertain 1x1 LTI, peak gain = 1, 1 occurrences
    k1: Uncertain real, nominal = 2, range = [1.2,2.8], 1 occurrences

Type "IC.NominalValue" to see the nominal value, "get(IC)" to see all properties, and "IC.Uncertainty" to interact with the uncertain elements.

Complex mu-Synthesis

You can use the command musyn to synthesize a robust controller for the open-loop interconnection
IC. By default, musyn treats all uncertain real parameters, in this example k1, as complex
uncertainty. Recall that k1 is a real parameter with a nominal value of 2 and a range between 1.2 and
2.8. In complex mu-synthesis, it is replaced by a complex uncertain parameter varying in a disk
centered at 2 and with radius 0.8. The plot below compares the range of k1 values when k1 is treated
as real (red x) vs. complex (blue *).

k1c = ucomplex('k1c',2,'Radius',0.8);  % complex approximation

% Plot 80 samples of the real and complex parameters
k1samp = usample(k1,80);
k1csamp = usample(k1c,80);
plot(k1samp(:),0*k1samp(:),'rx',real(k1csamp(:)),imag(k1csamp(:)),'b*')
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hold on

% Draw value ranges for real and complex k1
plot(k1.Nominal,0,'rx',[1.2 2.8],[0 0],'r-','MarkerSize',14,'LineWidth',2)
the=0:0.02*pi:2*pi;
z=sin(the)+sqrt(-1)*cos(the);
plot(real(0.8*z+2),imag(0.8*z),'b')
hold off

% Plot formatting
axis([1 3 -1 1]), axis square
ylabel('Imaginary'), xlabel('Real')
title('Real vs. complex uncertainty model for k1')

Synthesize a robust controller Kc using complex mu-synthesis (treating k1 as a complex parameter).

[Kc,mu_c,infoc] = musyn(IC,1,1);

D-K ITERATION SUMMARY:
-----------------------------------------------------------------
                       Robust performance               Fit order
-----------------------------------------------------------------
  Iter         K Step       Peak MU       D Fit             D
    1           2.954        2.455        2.483            16
    2           1.146        1.144        1.154            18
    3           1.086        1.086         1.09            18
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    4           1.084        1.083        1.085            18
    5           1.082        1.081        1.082            18

Best achieved robust performance: 1.08

Note that mu_c exceeds 1 so the controller Kc fails to robustly achieve the desired performance level.

Mixed-Mu Synthesis

Mixed-mu synthesis accounts for uncertain real parameters directly in the synthesis process. Enable
mixed-mu synthesis by setting the MixedMU option to 'on'.

opt = musynOptions('MixedMU','on');
[Km,mu_m] = musyn(IC,1,1,opt);

DG-K ITERATION SUMMARY:
-------------------------------------------------------------------
                       Robust performance                 Fit order
-------------------------------------------------------------------
  Iter         K Step       Peak MU       DG Fit           D      G
    1           2.954        2.081        2.371           16      8
    2           1.674        1.433        1.675           14      8
    3          0.9605        1.021        1.238           16      8
    4          0.9151       0.9477       0.9986           20      8
    5          0.9009       0.9234       0.9713           18      8
    6          0.8936       0.9046       0.9403           18      8
    7           0.892       0.9006       0.8966           20      8
    8          0.8867       0.8951       0.9266           18      8
    9          0.8855       0.8905       0.9102           20      8
   10          0.8792       0.8808        0.942           18      8

Best achieved robust performance: 0.881

Mixed-mu synthesis is able to find a controller that achieves the desired performance and robustness
objectives. A comparison of the open-loop responses shows that the mixed-mu controller Km gives less
phase margin near 3 rad/s because it only needs to guard against real variations of k1.

clf
% Note: Negative sign because interconnection in Fig 2 uses positive feedback
bode(-Kc*plant.NominalValue(1,1),'b',-Km*plant.NominalValue(1,1),'r',{1e-2,1e2})
grid
legend('P*Kc - complex mu loop gain','P*Km - mixed mu loop gain','location','SouthWest')
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Worst-Case Analysis

A comparison of the two controllers indicates that taking advantage of the "realness" of k1 results in
a better performing, more robust controller.

To assess the worst-case closed-loop performance of Kc and Km, form the closed-loop interconnection
of Figure 2 and use the command wcgain to determine how large the disturbance-to-error norm can
get for the specified plant uncertainty.

clpKc = lft(IC,Kc);
clpKm = lft(IC,Km);
[maxgainKc,badpertKc] = wcgain(clpKc);
maxgainKc

maxgainKc = 

  struct with fields:

           LowerBound: 2.0846
           UpperBound: 2.0891
    CriticalFrequency: 1.4295

[maxgainKm,badpertKm] = wcgain(clpKm);
maxgainKm
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maxgainKm = 

  struct with fields:

           LowerBound: 0.8775
           UpperBound: 0.8792
    CriticalFrequency: 0.1470

The mixed-mu controller Km has a worst-case gain of 0.88 while the complex-mu controller Kc has a
worst-case gain of 2.2, or 2.5 times larger.

Disturbance Rejection Simulations

To compare the disturbance rejection performance of Kc and Km, first build closed-loop models of the
transfer from input disturbance dist to f2, f1, and z2 (position of the mass m2)

Km.u = 'z2';  Km.y = 'f1';
clsimKm = connect(plant,Wdist,Km,'dist',{'f2','f1','z2'});
Kc.u = 'z2';  Kc.y = 'f1';
clsimKc = connect(plant,Wdist,Kc,'dist',{'f2','f1','z2'});

Inject white noise into the low-pass filter Wdist to simulate the input disturbance f2. The nominal
closed-loop performance of the two designs is nearly identical.

t = 0:.01:100;
dist = randn(size(t));
yKc = lsim(clsimKc.Nominal,dist,t);
yKm = lsim(clsimKm.Nominal,dist,t);

% Plot
subplot(311)
plot(t,yKc(:,3),'b',t,yKm(:,3),'r')
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title('Nominal Disturbance Rejection Response')
ylabel('z2')

subplot(312)
plot(t,yKc(:,2),'b',t,yKm(:,2),'r')
ylabel('f1 (control)')
legend('Kc','Km','Location','NorthWest')

subplot(313)
plot(t,yKc(:,1),'k')
ylabel('f2 (disturbance)')
xlabel('Time (sec)')

Next, compare the worst-case scenarios for Kc and Km by setting the plant uncertainty to the worst-
case values computed with wcgain.

clsimKc_wc = usubs(clsimKc,badpertKc);
clsimKm_wc = usubs(clsimKm,badpertKm);
yKc_wc = lsim(clsimKc_wc,dist,t);
yKm_wc = lsim(clsimKm_wc,dist,t);

subplot(211)
plot(t,yKc_wc(:,3),'b',t,yKm_wc(:,3),'r')
title('Worse-Case Disturbance Rejection Response')
ylabel('z2')
subplot(212)
plot(t,yKc_wc(:,2),'b',t,yKm_wc(:,2),'r')
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ylabel('f1 (control)')
legend('Kc','Km','Location','NorthWest')

This shows that the mixed-mu controller Km significantly outperforms Kc in the worst-case scenario.
By exploiting the fact that k1 is real, the mixed-mu controller is able to deliver better performance at
equal robustness.

Controller Simplification

The mixed-mu controller Km has relatively high order compared to the plant. To obtain a simpler
controller, use musyn's fixed-order tuning capability. This uses hinfstruct instead of hinfsyn for
the synthesis step. You can try different orders to find the simplest controller that maintains robust
performance. For example, try tuning a fifth-order controller. Use the "RandomStart" option to run
several mu-synthesis cycles, each starting from a different initial value of K.

K = tunableSS('K',5,1,1);  % 5th-order tunable state-space model

opt = musynOptions('MixedMU','on','MaxIter',20,'RandomStart',2);
rng(0), [CL,mu_f] = musyn(lft(IC,K),opt);

=== Synthesis 1 of 3 ============================================

DG-K ITERATION SUMMARY:
-------------------------------------------------------------------
                       Robust performance                 Fit order
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-------------------------------------------------------------------
  Iter         K Step       Peak MU       DG Fit           D      G
    1           43.48        30.74        31.06           12      6
    2           9.524        10.01        10.55           16      6
    3            6.82        6.739        10.49           16      6
    4           4.436        4.431        4.472           16      8
    5           2.639        2.644         3.58           18      8
    6           2.213        2.198        2.721           20      8
    7           1.393        1.799        3.198           14      8
    8           1.691        1.513        1.513           20      8
    9           1.173        1.263         1.76           20      8
   10            1.19         1.19        1.191           20      8
   11           1.115        1.119        1.298           18      8
   12           1.074        1.074        1.102           18      8
   13           1.037        1.037        1.136           18      8
   14           1.028        1.028        1.101           18      8
   15           1.029        1.029        1.046           18      8

Best achieved robust performance: 1.03

=== Synthesis 2 of 3 ============================================

DG-K ITERATION SUMMARY:
-------------------------------------------------------------------
                       Robust performance                 Fit order
-------------------------------------------------------------------
  Iter         K Step       Peak MU       DG Fit           D      G
    1           3.166        2.165        2.417           18      8
    2           1.618        1.609         1.62           20      8
    3           1.148        1.148        1.169           20      8
    4           1.019        1.048         1.19           20      8
    5           1.048        1.048        1.125           16      8
    6           1.021        1.021        1.124           20      8
    7           1.028        1.028        1.034           18      8
    8           1.017        1.017        1.065           18      8

Best achieved robust performance: 1.02

=== Synthesis 3 of 3 ============================================

DG-K ITERATION SUMMARY:
-------------------------------------------------------------------
                       Robust performance                 Fit order
-------------------------------------------------------------------
  Iter         K Step       Peak MU       DG Fit           D      G
    1           3.469        3.356        3.357           16      8
    2           2.111          2.1          2.1           18      8
    3           1.723        1.722        1.722           16      8
    4             1.2        1.199        1.403           18      8
    5           1.082         1.08        1.115           18      8
    6            1.03         1.03        1.064           16      8
    7           1.031         1.03        1.052           18      8
    8           1.027        1.026        1.032           18      8
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Best achieved robust performance: 1.03

The best controller nearly delivers the desired robust performance (robust performance mu_f is close
to 1). Compare the two controllers.

clf, bode(Km,getBlockValue(CL,'K'))
legend('Full order','5th order')

See Also
musyn | wcgain

More About
• “Robust Controller Design Using Mu Synthesis” on page 3-2
• “Robustness and Worst-Case Analysis” on page 2-27
• “Control of a Two-Tank System” on page 3-34
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Robust MIMO Controller for Two-Loop Autopilot
This example shows how to design a robust controller for a two-loop autopilot that controls the pitch
rate and vertical acceleration of an airframe. The controller is robust against gain and phase
variations in the multichannel feedback loop.

Linearized Airframe Model

The airframe dynamics and the autopilot are modeled in Simulink. See “Tuning of a Two-Loop
Autopilot” for more information about this model and for additional design and tuning options.

open_system('rct_airframe2')

As in the example Tuning of a Two-Loop Autopilot, trim the airframe for  and . The
trim condition corresponds to zero normal acceleration and pitching moment (  and  steady). Use
findop to compute the corresponding operating condition. Then, linearize the airframe model at this
trim condition.

opspec = operspec('rct_airframe2');

% Specify trim condition
% Xe,Ze: known, not steady
opspec.States(1).Known = [1;1];
opspec.States(1).SteadyState = [0;0];
% u,w: known, w steady
opspec.States(3).Known = [1 1];
opspec.States(3).SteadyState = [0 1];
% theta: known, not steady
opspec.States(2).Known = 1;
opspec.States(2).SteadyState = 0;
% q: unknown, steady
opspec.States(4).Known = 0;
opspec.States(4).SteadyState = 1;
% controller states unknown, not steady
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opspec.States(5).SteadyState = [0;0];

op = findop('rct_airframe2',opspec);
G = linearize('rct_airframe2','rct_airframe2/Airframe Model',op);
G.InputName = 'delta';
G.OutputName = {'az','q'};

 Operating point search report:
---------------------------------

 Operating point search report for the Model rct_airframe2.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States: 
----------
(1.) rct_airframe2/Airframe Model/Aerodynamics & Equations of Motion/ Equations of Motion (Body Axes)/Position
      x:             0      dx:           984
      x:     -3.05e+03      dx:             0
(2.) rct_airframe2/Airframe Model/Aerodynamics & Equations of Motion/ Equations of Motion (Body Axes)/Theta
      x:             0      dx:      -0.00972
(3.) rct_airframe2/Airframe Model/Aerodynamics & Equations of Motion/ Equations of Motion (Body Axes)/U,w
      x:           984      dx:          22.7
      x:             0      dx:      2.46e-11 (0)
(4.) rct_airframe2/Airframe Model/Aerodynamics & Equations of Motion/ Equations of Motion (Body Axes)/q
      x:      -0.00972      dx:     -1.72e-16 (0)
(5.) rct_airframe2/MIMO Controller
      x:      0.000654      dx:        -0.009
      x:      4.13e-19      dx:        0.0303

Inputs: 
----------
(1.) rct_airframe2/delta trim
      u:      0.000436    [-Inf Inf]

Outputs: None 
----------

Nominal Controller Design

Design an H-infinity controller that responds to a step change in vertical acceleration under 1 second.
Use a mixed-sensitivity formulation with a lowpass weight wS that penalizes low-frequency tracking
error and a highpass weight wT that enforces adequate roll-off. Build an augmented plant with
azref,delta as inputs and the filtered wS*e,wT*az,e,q as outputs. (For information about the
mixed-sensitivity formulation, see “Mixed-Sensitivity Loop Shaping”.)

sb = sumblk('e = azref-az');
wS = makeweight(1e2,5,0.1);
wS.u = 'e';
wS.y = 'we';
wT = makeweight(0.1,50,1e2);
wT.u = 'az';
wT.y = 'waz';

Paug = connect(G,wS,wT,sb,{'azref','delta'},{'we','waz','e','q'});
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Compute the optimal H-infinity controller using hinfsyn. In this configuration there are two
measurements e,q and one control delta.

[Knom,~,gam] = hinfsyn(Paug,2,1);
gam

gam =

    0.5928

Verify the open-loop gain against wS,wT.

f = figure();
sigma(Knom*G,wS,'r--',1/wT,'g--'), grid
legend('open-loop gain','> wS at low freq','< 1/wT at high freq')

Plot the closed-loop response.

CL = feedback(G*Knom,diag([1 -1]));
step(CL(:,1)), grid
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Robustness Analysis

Compute the disk margins at the plant input and outputs. That the az loop uses negative feedback
while the q loop uses positive feedback, so change the sign of the loop gain of the q loop before using
diskmargin.

loopsgn = diag([1 -1]);

Examine the margins at the plant input.

DM = diskmargin(Knom*loopsgn*G)

DM = 

  struct with fields:

           GainMargin: [0.3918 2.5524]
          PhaseMargin: [-47.2105 47.2105]
           DiskMargin: 0.8740
           LowerBound: 0.8740
           UpperBound: 0.8740
            Frequency: 28.8842
    WorstPerturbation: [1x1 ss]

For the margins at plant outputs, use the multiloop margin to account for simultaneous, independent
variations in both output channels.
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[~,MM] = diskmargin(loopsgn*G*Knom)

MM = 

  struct with fields:

           GainMargin: [0.4994 2.0025]
          PhaseMargin: [-36.9262 36.9262]
           DiskMargin: 0.6678
           LowerBound: 0.6678
           UpperBound: 0.6691
            Frequency: 23.6845
    WorstPerturbation: [2x2 ss]

Finally, compute the margins against simultaneous variations at the plant input and outputs.

MMIO = diskmargin(loopsgn*G,Knom)

MMIO = 

  struct with fields:

           GainMargin: [0.6866 1.4565]
          PhaseMargin: [-21.0565 21.0565]
           DiskMargin: 0.3717
           LowerBound: 0.3717
           UpperBound: 0.3725
            Frequency: 24.8030
    WorstPerturbation: [1x1 struct]

The disk-based gain and phase margins exceed 2 (6dB) and 35 degrees at the plant input and the
plant outputs. Moreover, MMIO indicates that this feedback loop can withstand gain variations by a
factor 1.45 or phase variations of 21 degrees affecting all plant inputs and outputs at once.

Next, investigate the impact of gain and phase uncertainty on performance. Use the umargin control
design block to model a gain change factor of 1.4 (3dB) and phase change of 20 degrees in each
feedback channel. Use getDGM to fit an uncertainty disk to these amounts of gain and phase change.

GM = 1.4;
PM = 20;
DGM = getDGM(GM,PM,'balanced');
ue = umargin('e',DGM);
uq = umargin('q',DGM);
Gunc = blkdiag(ue,uq)*G;
Gunc.OutputName = {'az','q'};

Rebuild the closed-loop model and sample the gain and phase uncertainty to gauge the impact on the
step response.

CLunc = feedback(Gunc*Knom,loopsgn);
step(CLunc(:,1),3)
grid
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The plot shows significant variability in performance, with large overshoot and steady-state error for
some combinations of gain and phase variations.

Robust Controller Synthesis

Redo the controller synthesis to account for gain and phase variations using musyn. This synthesis
optimizes performance uniformly for the specified range of gain and phase uncertainty.

Punc = connect(Gunc,wS,wT,sb,{'azref','delta'},{'we','waz','e','q'});
[Kr,gam] = musyn(Punc,2,1);
gam

D-K ITERATION SUMMARY:
-----------------------------------------------------------------
                       Robust performance               Fit order
-----------------------------------------------------------------
  Iter         K Step       Peak MU       D Fit             D
    1           51.06        26.33        26.62             4
    2           7.028         5.24        5.303             8
    3           1.681        1.156        1.157             4
    4          0.9705       0.9702       0.9822            10
    5           0.962       0.9619       0.9622            10
    6          0.9625       0.9623       0.9667            10

Best achieved robust performance: 0.962
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gam =

    0.9619

Compare the sampled step responses for the nominal and robust controllers. The robust design
reduces both overshoot and steady-state errors and gives more consistent performance across the
modeled range of gain and phase uncertainty.

CLr = feedback(Gunc*Kr,loopsgn);
rng(0) % for reproducibility
step(CLunc(:,1),3)
hold
rng(0)
step(CLr(:,1),3)
grid

Current plot held

The robust controller achieves this performance by increasing the (nominal) disk margins at the plant
output and, to a lesser extent, the I/O disk margin. For instance, compare the disk-based margins at
the plant outputs for the nominal and robust designs. Use diskmarginplot to see the variations of
the margins with frequency.

Lnom = loopsgn*G*Knom;
Lrob = loopsgn*G*Kr;
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clf
diskmarginplot(Lnom,Lrob)
title('Disk margins at plant outputs')
grid
legend('Nominal','Robust')

Examine the margins against variations simultaneous variations at the plant inputs and outputs with
the robust controller.

MMIO = diskmargin(loopsgn*G,Kr)

MMIO = 

  struct with fields:

           GainMargin: [0.6492 1.5404]
          PhaseMargin: [-24.0166 24.0166]
           DiskMargin: 0.4254
           LowerBound: 0.4254
           UpperBound: 0.4263
            Frequency: 19.6040
    WorstPerturbation: [1x1 struct]

Recall that with the nominal controller, the feedback loop could withstand gain variations of a factor
of 1.45 or phase variations of 21 degrees affecting all plant inputs and outputs at once. With the
robust controller, those margins increase to about 1.54 and 24 degrees.
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View the range of simultaneous gain and phase variations that the robust design can sustain at all
plant inputs and outputs.

diskmarginplot(MMIO.GainMargin)

Nonlinear Simulation of Worst-Case Scenario

diskmargin returns the smallest change in gain and phase that destabilizes the feedback loop. It
can be insightful to inject this perturbation in the nonlinear simulation to further analyze the
implications for the real system. For example, compute the destabilizing perturbation at the plant
outputs for the nominal controller.

[~,MM] = diskmargin(Lnom);
WP = MM.WorstPerturbation;
bode(WP)
title('Smallest destabilizing perturbation')
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The worst perturbation is a diagonal, dynamic perturbation that multiplies the open-loop response at
the plant outputs. With this perturbation, the closed-loop system becomes unstable with an
undamped pole at the frequency w0 = MM.Frequency.

damp(feedback(WP*G*Knom,loopsgn))

                                                                       
         Pole              Damping       Frequency      Time Constant  
                                       (rad/seconds)      (seconds)    
                                                                       
 -1.88e-03                 1.00e+00       1.88e-03         5.33e+02    
 -2.55e-02                 1.00e+00       2.55e-02         3.92e+01    
 -3.20e-02                 1.00e+00       3.20e-02         3.12e+01    
 -5.16e-02                 1.00e+00       5.16e-02         1.94e+01    
 -1.25e-01                 1.00e+00       1.25e-01         7.98e+00    
 -3.85e+00 + 5.04e+00i     6.07e-01       6.34e+00         2.60e-01    
 -3.85e+00 - 5.04e+00i     6.07e-01       6.34e+00         2.60e-01    
 -8.38e+00 + 1.17e+01i     5.81e-01       1.44e+01         1.19e-01    
 -8.38e+00 - 1.17e+01i     5.81e-01       1.44e+01         1.19e-01    
 -2.13e-14 + 2.37e+01i     9.00e-16       2.37e+01         4.69e+13    
 -2.13e-14 - 2.37e+01i     9.00e-16       2.37e+01         4.69e+13    
 -2.95e+01                 1.00e+00       2.95e+01         3.39e-02    
 -3.33e+01                 1.00e+00       3.33e+01         3.00e-02    
 -6.04e+01 + 2.28e+01i     9.36e-01       6.46e+01         1.66e-02    
 -6.04e+01 - 2.28e+01i     9.36e-01       6.46e+01         1.66e-02    
 -3.86e+01 + 5.36e+01i     5.85e-01       6.61e+01         2.59e-02    
 -3.86e+01 - 5.36e+01i     5.85e-01       6.61e+01         2.59e-02    
 -1.10e+03                 1.00e+00       1.10e+03         9.05e-04    
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w0 = MM.Frequency

w0 =

   23.6845

Note that the gain and phase variations induced by this perturbation lie on the boundary of the range
of safe gain/phase variations computed by diskmargin. To confirm this result, compute the
frequency response of the worst perturbation at the frequency w0, convert it to a gain and phase
variation, and visualize it along with the range of safe gain and phase variations represented by the
multiloop disk margin.

DELTA = freqresp(WP,w0);
clf
diskmarginplot(MM.GainMargin)
title('Range of stable gain and phase variations')
hold on
plot(20*log10(abs(DELTA(1,1))),abs( angle(DELTA(1,1))*180/pi),'ro')
plot(20*log10(abs(DELTA(2,2))),abs( angle(DELTA(2,2))*180/pi),'ro')

To simulate the effect of this worst perturbation on the full nonlinear model in Simulink, insert it as a
block before the controller block, as done in the modified model rct_airframeWP.

close(f)
open_system('rct_airframeWP')
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Here the MIMO Controller block is set to the nominal controller Knom. To simulate the nonlinear
response with this controller, compute the trim deflection and q initial value from the operating
condition op.

delta_trim = op.Inputs.u + [1.5 0]*op.States(5).x;
q_ini = op.States(4).x;

By commenting the WorstPerturbation block in and out, you can simulate the response with or
without this perturbation. The results are shown below and confirm the destabilizing effect of the
gain and phase variation computed by diskmargin.
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Figure 1: Nominal response.

Figure 2: Response with destabilizing gain/phase perturbation.

See Also
diskmargin | diskmarginplot | musyn | umargin

More About
• “Stability Analysis Using Disk Margins” on page 2-2
• “Uncertain Gain and Phase” on page 1-12
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Robust Controller for Spinning Satellite
This example expands on the “MIMO Stability Margins for Spinning Satellite” on page 2-20 example
by designing a robust controller that overcomes the flaws of the "naive" design.

Plant model

The plant model is the same as described in “MIMO Stability Margins for Spinning Satellite” on page
2-20.

a = 10;
A = [0 a;-a 0];
B = eye(2);
C = [1 a;-a 1];
D = 0;
Gnom = ss(A,B,C,D);

Nominal Mixed-Sensitivity Design

Start with a basic mixed-sensitivity design using mixsyn. Pick the weights to achieve good
performance while limiting bandwidth and control effort. (See “Mixed-Sensitivity Loop Shaping” for
details about this technique and how to choose weighting functions.)

wS = makeweight(1e3,1,1e-1);
wKS = makeweight(0.5,[500 1e2],1e4,0,2);
wT = makeweight(0.5,20,100);
bodemag(wS,wKS,wT), grid
legend('wS','wKS','wT')
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Compute the optimal MIMO controller K1 with mixsyn.

[K1,~,gam] = mixsyn(Gnom,wS,wKS,wT);
gam

gam = 0.7166

The optimal performance is about 0.7, indicating that mixsyn easily met the bounds on S, KS, T.
Close the feedback loop and plot the step response.

T = feedback(Gnom*K1,eye(2));
step(T,2), grid
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The nominal responses are fast with little overshoot.

Disk Margins

To gauge the robustness of this controller, check the disk margins at the plant inputs and the plant
outputs.

diskmarginplot(K1*Gnom,'b',Gnom*K1,'r--') 
grid
legend('At plant inputs','At plant outputs')

3 Mu Synthesis

3-104



Both are good with near 10 dB gain margin and 50 degrees phase margin. Also check the disk
margins when the gain and phase are allowed to vary at both the inputs and outputs of the plant.

MMIO = diskmargin(Gnom,K1)

MMIO = struct with fields:
           GainMargin: [0.9915 1.0085]
          PhaseMargin: [-0.4863 0.4863]
           DiskMargin: 0.0085
           LowerBound: 0.0085
           UpperBound: 0.0085
            Frequency: 9.9988
    WorstPerturbation: [1x1 struct]

The I/O margins are extremely small. This first design also lacks robustness. You can confirm the poor
robustness by injecting the smallest destabilizing perturbations returned by diskmargin at the plant
inputs and outputs. (See diskmargin for further details about the WorstPerturbation field of its
output structures.)

WP = MMIO.WorstPerturbation;
bode(WP.Input,WP.Output)
title('Smallest destabilizing perturbation')
legend('Input perturbation','Output perturbation')
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Tpert = feedback(WP.Output*Gnom*WP.Input*K1,eye(2));
step(Tpert,5)
grid
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The step response continues to oscillate after the initial transient indicating marginal instability.
Verify that the perturbed closed-loop system Tpert has a pole on the imaginary axis at the critical
frequency MMIO.Frequency.

[wn,zeta] = damp(Tpert); 
[~,idx] = min(zeta); 
[zeta(idx) wn(idx) MMIO.Frequency]

ans = 1×3

    0.0000    9.9988    9.9988

Robust Design

Create an uncertain plant model where the parameter a (spinning frequency) varies in the range [7
13].

a = ureal('a',10,'range',[7 13]);
A = [0 a;-a 0];
B = eye(2);
C = [1 a;-a 1];
D = 0;
Gunc = ss(A,B,C,D);

You can use musyn to design a robust controller for this uncertain plant. To improve robustness, use
the umargin element to model gain and phase uncertainty at both inputs and outputs, so that musyn
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enforces robustness for the modeled range of uncertainty. Suppose that you want at least 2 dB gain
margin at each I/O (4 dB total for each channel). If your umargin elements model that full range of
variation, musyn might not yield good results, because it attempts to enforce robust performance
over the modeled uncertainty as well as robust stability. musyn most likely cannot maintained the
desired performance for that much gain variation. Instead, scale back the target to 1 dB gain
variation in each I/O.

GM = 1.1; % about 1 dB
u1 = umargin('u1',GM);
u2 = umargin('u2',GM);
y1 = umargin('y1',GM);
y2 = umargin('y2',GM);
InputMargins = append(u1,u2);
OutputMargins = append(y1,y2);
Gunc = OutputMargins*Gunc*InputMargins;

Augment the plant with the mixed-sensitivity weights and use musyn to optimize robust performance
for the modeled uncertainty, which includes both the parameter a and the gain and phase variations
at plant inputs and outputs.

P = augw(Gunc,wS,wKS,wT);
[K2,gam] = musyn(P,2,2);

D-K ITERATION SUMMARY:
-----------------------------------------------------------------
                       Robust performance               Fit order
-----------------------------------------------------------------
  Iter         K Step       Peak MU       D Fit             D
    1           175.9        2.593        2.606            24
    2            1.21         1.21        1.226            58
    3            1.17         1.17        1.182            56
    4           1.168        1.168        1.176            64
    5           1.167        1.167        1.173            56

Best achieved robust performance: 1.17

The robust performance is close to 1, indicating that the controller is close to robustly meeting the
mixed-sensitivity goals. Check the disk margins at the plant I/Os.

MMIO = diskmargin(Gnom,K2)

MMIO = struct with fields:
           GainMargin: [0.6396 1.5634]
          PhaseMargin: [-24.7920 24.7920]
           DiskMargin: 0.4396
           LowerBound: 0.4396
           UpperBound: 0.4487
            Frequency: 2.8513
    WorstPerturbation: [1x1 struct]

The margins are now about 1.6 dB and 25 degrees, much better than before. Compare the step
responses with each controller for 25 uncertainty samples.

T1 = feedback(Gunc*K1,eye(2));
T2 = feedback(Gunc*K2,eye(2));
rng(0) % for reproducibility
T1s = usample(T1,25);
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rng(0)
T2s = usample(T2,25);
opt = timeoptions; 
opt.YLim = {[-1 1.5]};
stepplot(T1s,T2s,4,opt)
grid
legend('Nominal design','Robust design','location','southeast')

The second design is a clear improvement. Further compare the sensitivity and complementary
sensitivity functions.

sigma(eye(2)-T1s,eye(2)-T2s), grid
axis([1e-2 1e4 -80 20])
title('Sensitivity')
legend('Nominal design','Robust design','location','southeast')

 Robust Controller for Spinning Satellite

3-109



sigma(T1s,T2s), grid
axis([1e-2 1e4 -80 20])
title('Complementary Sensitivity')
legend('Nominal design','Robust design','location','southeast')
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This example has shown how to use the umargin uncertain element to improve stability margins as
part of a robust controller synthesis.

See Also
diskmargin | musyn | umargin

More About
• “Stability Analysis Using Disk Margins” on page 2-2
• “Uncertain Gain and Phase” on page 1-12
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Introduction to Linear Matrix
Inequalities

• “Linear Matrix Inequalities” on page 4-2
• “LMI Applications” on page 4-5
• “Further Mathematical Background on LMI Problems” on page 4-8
• “Bibliography” on page 4-9

4



Linear Matrix Inequalities
Linear Matrix Inequalities (LMIs) and LMI techniques have emerged as powerful design tools in areas
ranging from control engineering to system identification and structural design. Three factors make
LMI techniques appealing:

• A variety of design specifications and constraints can be expressed as LMIs.
• Once formulated in terms of LMIs, a problem can be solved exactly by efficient convex

optimization algorithms (see “LMI Solvers” on page 5-17).
• While most problems with multiple constraints or objectives lack analytical solutions in terms of

matrix equations, they often remain tractable in the LMI framework. This makes LMI-based
design a valuable alternative to classical “analytical” methods.

See [9] for a good introduction to LMI concepts. Robust Control Toolbox software is designed as an
easy and progressive gateway to the new and fast-growing field of LMIs:

• For users who occasionally need to solve LMI problems, the LMI Editor and the tutorial
introduction to LMI concepts and LMI solvers provide for quick and easy problem solving.

• For more experienced LMI users, LMI Lab, offers a rich, flexible, and fully programmable
environment to develop customized LMI-based tools.

LMI Features
Robust Control Toolbox LMI functionality serves two purposes:

• Provide state-of-the-art tools for the LMI-based analysis and design of robust control systems
• Offer a flexible and user-friendly environment to specify and solve general LMI problems (the LMI

Lab)

Examples of LMI-based analysis and design tools include

• Functions to analyze the robust stability and performance of uncertain systems with varying
parameters (popov, quadstab, quadperf ...)

• Functions to design robust control with a mix of H2, H∞, and pole placement objectives
(h2hinfsyn)

• Functions for synthesizing robust gain-scheduled H∞ controllers (hinfgs)

For users interested in developing their own applications, the LMI Lab provides a general-purpose
and fully programmable environment to specify and solve virtually any LMI problem. Note that the
scope of this facility is by no means restricted to control-oriented applications.

Note Robust Control Toolbox software implements state-of-the-art interior-point LMI solvers. While
these solvers are significantly faster than classical convex optimization algorithms, you should keep
in mind that the complexity of LMI computations can grow quickly with the problem order (number of
states). For example, the number of operations required to solve a Riccati equation is o(n3) where n is
the state dimension, while the cost of solving an equivalent “Riccati inequality” LMI is o(n6).

LMIs and LMI Problems
A linear matrix inequality (LMI) is any constraint of the form
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A(x) := A0 + x1A1 + ... + xNAN < 0 (4-1)

where

• x = (x1, . . . , xN) is a vector of unknown scalars (the decision or optimization variables)
• A0, . . . , AN are given symmetric matrices
• < 0 stands for “negative definite,” i.e., the largest eigenvalue of A(x) is negative

Note that the constraints A(x) > 0 and A(x) < B(x) are special cases of “Equation 4-1” since they can
be rewritten as –A(x) < 0 and A(x) – B(x) < 0, respectively.

The LMI of “Equation 4-1” is a convex constraint on x since A(y) < 0 and A(z) < 0 imply that
A y + z

2 < 0. As a result,

• Its solution set, called the feasible set, is a convex subset of RN

• Finding a solution x to “Equation 4-1”, if any, is a convex optimization problem.

Convexity has an important consequence: even though “Equation 4-1” has no analytical solution in
general, it can be solved numerically with guarantees of finding a solution when one exists. Note that
a system of LMI constraints can be regarded as a single LMI since

A1 x < 0
⋮

AK x < 0

is equivalent to

A x : = diag A1 x , …, AK x < 0

where diag (A1(x), . . . , AK(x)) denotes the block-diagonal matrix with
A1(x), . . . , AK(x) on its diagonal. Hence multiple LMI constraints can be imposed on the vector of
decision variables x without destroying convexity.

In most control applications, LMIs do not naturally arise in the canonical form of “Equation 4-1” , but
rather in the form

L(X1, . . . , Xn) < R(X1, . . . , Xn)

where L(.) and R(.) are affine functions of some structured matrix variables X1, . . . , Xn. A simple
example is the Lyapunov inequality

ATX + XA < 0 (4-2)

where the unknown X is a symmetric matrix. Defining x1, . . . , xN as the independent scalar entries of
X, this LMI could be rewritten in the form of “Equation 4-1”. Yet it is more convenient and efficient to
describe it in its natural form “Equation 4-2”, which is the approach taken in the LMI Lab.
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See Also

More About
• “LMI Applications” on page 4-5
• “Tools for Specifying and Solving LMIs” on page 5-2
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LMI Applications
Finding a solution x to the LMI system

A(x) < 0 (4-3)

is called the feasibility problem. Minimizing a convex objective under LMI constraints is also a convex
problem. In particular, the linear objective minimization problem:

Minimize cTx subject to

A(x) < 0 (4-4)

plays an important role in LMI-based design. Finally, the generalized eigenvalue minimization
problem

Minimize λ subject to

A x < λB x
B x > 0
C x > 0

 (4-5)

is quasi-convex and can be solved by similar techniques. It owes its name to the fact that is related to
the largest generalized eigenvalue of the pencil (A(x),B(x)).

Many control problems and design specifications have LMI formulations [9]. This is especially true for
Lyapunov-based analysis and design, but also for optimal LQG control, H∞ control, covariance control,
etc. Further applications of LMIs arise in estimation, identification, optimal design, structural design
[6], [7], matrix scaling problems, and so on. The main strength of LMI formulations is the ability to
combine various design constraints or objectives in a numerically tractable manner.

A nonexhaustive list of problems addressed by LMI techniques includes the following:

• Robust stability of systems with LTI uncertainty (µ-analysis) ([24], [21], [27])
• Robust stability in the face of sector-bounded nonlinearities (Popov criterion) ([22], [28], [13],

[16])
• Quadratic stability of differential inclusions ([15], [8])
• Lyapunov stability of parameter-dependent systems ([12])
• Input/state/output properties of LTI systems (invariant ellipsoids, decay rate, etc.) ([9])
• Multi-model/multi-objective state feedback design ([4], [17], [3], [9], [10])
• Robust pole placement
• Optimal LQG control ([9])
• Robust H∞ control ([11], [14])
• Multi-objective H∞ synthesis ([18], [23], [10], [18])
• Design of robust gain-scheduled controllers ([5], [2])
• Control of stochastic systems ([9])
• Weighted interpolation problems ([9])

To hint at the principles underlying LMI design, let's review the LMI formulations of a few typical
design objectives.
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Stability
The stability of the dynamic system

ẋ = Ax

is equivalent to the feasibility of the following problem:

Find P = PT such that AT P + P A < 0, P > I.

This can be generalized to linear differential inclusions (LDI)

ẋ = A(t)x

where A(t) varies in the convex envelope of a set of LTI models:

A t ∈ Co A1, …, An = ∑
i = 1

n
aiAi:ai ≥ 0, ∑

i = 1

N
ai = 1 .

A sufficient condition for the asymptotic stability of this LDI is the feasibility of

Find P = PT such that Ai
TP + PAi < 0, P > I.

RMS Gain
The random-mean-squares (RMS) gain of a stable LTI system

ẋ = Ax + Bu
y = Cx + Du

is the largest input/output gain over all bounded inputs u(t). This gain is the global minimum of the
following linear objective minimization problem [1], [25], [26].

Minimize γ over X = XT and γ such that

ATX + XA XB CT

BTX −γI DT

C D −γI

< 0

and

X > 0.

LQG Performance
For a stable LTI system

G
ẋ = Ax + Bw

y = Cx

where w is a white noise disturbance with unit covariance, the LQG or H2 performance ∥G∥2 is defined
by
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G 2
2: = lim

T ∞
E 1

T ∫
0

T
yT t y t dt

= 1
2π ∫

−∞

∞
GH jω G jω dω .

It can be shown that

G 2
2 = inf Trace CPCT : AP + PAT + BBT < 0 .

Hence G 2
2 is the global minimum of the LMI problem. Minimize Trace (Q) over the symmetric

matrices P,Q such that

AP + PAT + BBT < 0

and

Q CP

PCT P
> 0.

Again this is a linear objective minimization problem since the objective Trace (Q) is linear in the
decision variables (free entries of P,Q).

See Also

More About
• “Tools for Specifying and Solving LMIs” on page 5-2
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Further Mathematical Background on LMI Problems
Efficient interior-point algorithms are now available to solve the three generic LMI problems
“Equation 4-2”–“Equation 4-4” defined in “LMI Applications” on page 4-5. These algorithms have a
polynomial-time complexity. That is, the number N(ɛ) of flops needed to compute an ɛ-accurate
solution is bounded by

M N3 log(V/ɛ)

where M is the total row size of the LMI system, N is the total number of scalar decision variables,
and V is a data-dependent scaling factor. Robust Control Toolbox software implements the Projective
Algorithm of Nesterov and Nemirovski [20], [19]. In addition to its polynomial-time complexity, this
algorithm does not require an initial feasible point for the linear objective minimization problem
“Equation 4-3”or the generalized eigenvalue minimization problem “Equation 4-4”.

Some LMI problems are formulated in terms of inequalities rather than strict inequalities. For
instance, a variant of “Equation 4-3” is

Minimize cTx subject to A(x) < 0.

While this distinction is immaterial in general, it matters when A(x) can be made negative semi-
definite but not negative definite. A simple example is:

Minimize cTx subject to

x x
x x

≥ 0.  (4-6)

Such problems cannot be handled directly by interior-point methods which require strict feasibility of
the LMI constraints. A well-posed reformulation of “Equation 4-5” would be

Minimize cTx subject to x ≥ 0.

Keeping this subtlety in mind, we always use strict inequalities in this manual.

See Also

Related Examples
• “LMI Applications” on page 4-5
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Tools for Specifying and Solving LMIs
The LMI Lab is a high-performance package for solving general LMI problems. It blends simple tools
for the specification and manipulation of LMIs with powerful LMI solvers for three generic LMI
problems. Thanks to a structure-oriented representation of LMIs, the various LMI constraints can be
described in their natural block-matrix form. Similarly, the optimization variables are specified
directly as matrix variables with some given structure. Once an LMI problem is specified, it can be
solved numerically by calling the appropriate LMI solver. The three solvers feasp, mincx, and gevp
constitute the computational engine of the LMI portion of Robust Control Toolbox software. Their
high performance is achieved through C-MEX implementation and by taking advantage of the
particular structure of each LMI.

The LMI Lab offers tools to

• Specify LMI systems either symbolically with the LMI Editor or incrementally with the lmivar
and lmiterm commands

• Retrieve information about existing systems of LMIs
• Modify existing systems of LMIs
• Solve the three generic LMI problems (feasibility problem, linear objective minimization, and

generalized eigenvalue minimization)
• Validate results

This chapter gives a tutorial introduction to the LMI Lab as well as more advanced tips for making
the most out of its potential.

Some Terminology
Any linear matrix inequality can be expressed in the canonical form

L(x) = L0 + x1L1 + . . . + xNLN < 0

where

• L0, L1, . . . , LN are given symmetric matrices
• x = (x1, . . . , xN)T ∊ RN is the vector of scalar variables to be determined. We refer to x1, . . . , xN as

the decision variables. The names “design variables” and “optimization variables” are also found
in the literature.

Even though this canonical expression is generic, LMIs rarely arise in this form in control
applications. Consider for instance the Lyapunov inequality

ATX + XA < 0  (5-1)

where

A =
−1 2
0 −2

and the variable

X =
x1 x2
x2 x3

5 LMI Lab
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is a symmetric matrix. Here the decision variables are the free entries x1, x2, x3 of X and the canonical
form of this LMI reads

x1
−2 2
2 0

+ x2
0 −3
−3 4

+ x3
0 0
0 −4

< 0.  (5-2)

Clearly this expression is less intuitive and transparent than “Equation 5-1”. Moreover, the number of
matrices involved in “Equation 5-2” grows roughly as n2 /2 if n is the size of the A matrix. Hence, the
canonical form is very inefficient from a storage viewpoint since it requires storing o(n2 /2) matrices
of size n when the single n-by-n matrix A would be sufficient. Finally, working with the canonical form
is also detrimental to the efficiency of the LMI solvers. For these various reasons, the LMI Lab uses a
structured representation of LMIs. For instance, the expression ATX + XA in the Lyapunov inequality
“Equation 5-1” is explicitly described as a function of the matrix variable X, and only the A matrix is
stored.

In general, LMIs assume a block matrix form where each block is an affine combination of the matrix
variables. As a fairly typical illustration, consider the following LMI drawn from H∞ theory

NT
ATX + XA XCT B

CX −γI D

BT DT −γI

N < 0  (5-3)

where A, B, C, D, and N are given matrices and the problem variables are X = XT ∊ Rn×n and γ ∊ R.
We use the following terminology to describe such LMIs:

• N is called the outer factor, and the block matrix

L X, γ =
ATX + XA XCT B

CX −γI D

BT DT −γI

is called the inner factor. The outer factor needs not be square and is often absent.
• X and γ are the matrix variables of the problem. Note that scalars are considered as 1-by-1

matrices.
• The inner factor L(X, γ) is a symmetric block matrix, its block structure being characterized by the

sizes of its diagonal blocks. By symmetry, L(X, γ) is entirely specified by the blocks on or above the
diagonal.

• Each block of L(X, γ) is an affine expression in the matrix variables X and γ. This expression can
be broken down into a sum of elementary terms. For instance, the block (1,1) contains two
elementary terms: ATX and XA.

• Terms are either constant or variable. Constant terms are fixed matrices like B and D above.
Variable terms involve one of the matrix variables, like XA, XCT, and –γI above.

The LMI (“Equation 5-3”) is specified by the list of terms in each block, as is any LMI regardless of its
complexity.

As for the matrix variables X and γ, they are characterized by their dimensions and structure.
Common structures include rectangular unstructured, symmetric, skew-symmetric, and scalar. More
sophisticated structures are sometimes encountered in control problems. For instance, the matrix
variable X could be constrained to the block-diagonal structure:

 Tools for Specifying and Solving LMIs
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X =
x1 0 0
0 x2 x3
0 x3 x4

.

Another possibility is the symmetric Toeplitz structure:

X =
x1 x2 x3
x2 x1 x2
x3 x2 x1

.

Summing up, structured LMI problems are specified by declaring the matrix variables and describing
the term content of each LMI. This term-oriented description is systematic and accurately reflects the
specific structure of the LMI constraints. There is no built-in limitation on the number of LMIs that
you can specify or on the number of blocks and terms in any given LMI. LMI systems of arbitrary
complexity can therefore, be defined in the LMI Lab.

Overview of the LMI Lab
The LMI Lab offers tools to specify, manipulate, and numerically solve LMIs. Its main purpose is to

• Allow for straightforward description of LMIs in their natural block-matrix form
• Provide easy access to the LMI solvers (optimization codes)
• Facilitate result validation and problem modification

The structure-oriented description of a given LMI system is stored as a single vector called the
internal representation and generically denoted by LMISYS in the sequel. This vector encodes the
structure and dimensions of the LMIs and matrix variables, a description of all LMI terms, and the
related numerical data. It must be stressed that you need not attempt to read or understand the
content of LMISYS since all manipulations involving this internal representation can be performed in
a transparent manner with LMI-Lab tools.

The LMI Lab supports the following functionalities:

Specification of a System of LMIs

LMI systems can be either specified as symbolic matrix expressions with the interactive graphical
user interface lmiedit, or assembled incrementally with the two commands lmivar and lmiterm.
The first option is more intuitive and transparent while the second option is more powerful and
flexible.

Information Retrieval

The interactive function lmiinfo answers qualitative queries about LMI systems created with
lmiedit or lmivar and lmiterm. You can also use lmiedit to visualize the LMI system produced
by a particular sequence of lmivar/lmiterm commands.

Solvers for LMI Optimization Problems

General-purpose LMI solvers are provided for the three generic LMI problems defined in “LMI
Applications” on page 4-5. These solvers can handle very general LMI systems and matrix variable
structures. They return a feasible or optimal vector of decision variables x*. The corresponding values
X1*, …, XK* of the matrix variables are given by the function dec2mat.

5 LMI Lab
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Result Validation

The solution x* produced by the LMI solvers is easily validated with the functions evallmi and
showlmi. This allows a fast check and/or analysis of the results. With evallmi, all variable terms in
the LMI system are evaluated for the value x* of the decision variables. The left and right sides of
each LMI then become constant matrices that can be displayed with showlmi.

Modification of a System of LMIs

An existing system of LMIs can be modified in two ways:

• An LMI can be removed from the system with dellmi.
• A matrix variable X can be deleted using delmvar. It can also be instantiated, that is, set to some

given matrix value. This operation is performed by setmvar and allows, for example, to fix some
variables and solve the LMI problem with respect to the remaining ones.

See Also

Related Examples
• “Specifying a System of LMIs” on page 5-6
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Specifying a System of LMIs
The LMI Lab can handle any system of LMIs of the form

NT L(X1, . . . , XK) N < MT R(X1, . . . , XK) M

where

• X1, . . . , XK are matrix variables with some prescribed structure
• The left and right outer factors N and M are given matrices with identical dimensions
• The left and right inner factors L(.) and R(.) are symmetric block matrices with identical block

structures, each block being an affine combination of X1, . . . , XK and their transposes.

Note Throughout this chapter, “left side” refers to what is on the “smaller” side of the inequality,
and “right side” to what is on the “larger” side. Accordingly, X is called the right-hand side and 0
the left side of the LMI
       0 < X
even when this LMI is written as X > 0.

The specification of an LMI system involves two steps:

1 Declare the dimensions and structure of each matrix variable X1, . . . , XK .
2 Describe the term content of each LMI.

This process creates the so-called internal representation of the LMI system. This computer
description of the problem is used by the LMI solvers and in all subsequent manipulations of the LMI
system. It is stored as a single vector called LMISYS.

There are two ways of generating the internal description of a given LMI system: (1) by a sequence of
lmivar/lmiterm commands that build it incrementally, or (2) via the LMI Editor lmiedit where
LMIs can be specified directly as symbolic matrix expressions. Though somewhat less flexible and
powerful than the command-based description, the LMI Editor is more straightforward to use, hence
particularly well-suited for beginners. Thanks to its coding and decoding capabilities, it also
constitutes a good tutorial introduction to lmivar and lmiterm. Accordingly, beginners may elect to
skip the subsections on lmivar and lmiterm and to concentrate on the GUI-based specification of
LMIs with lmiedit.

See Also

Related Examples
• “Specify LMI System at the Command Line” on page 5-7
• “Specify LMIs with the LMI Editor GUI” on page 5-13
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Specify LMI System at the Command Line
This tutorial example shows how to specify LMI systems at the command line using the LMI Lab
tools.

Specify LMI System
Consider a stable transfer function,

G s = C sI − A −1B .

Suppose that G has four inputs, four outputs, and six states. Consider also a set of input/output
scaling matrices D with block-diagonal structure given by:

D =

d1 0 0 0
0 d1 0 0
0 0 d2 d3
0 0 d4 d5

.

The following problem arises in the robust stability analysis of systems with time-varying uncertainty
[4]. Find, if any, a scaling D with the specified structure, such that the largest gain across frequency
of DG(s)D−1 is less than 1.

This problem has a simple LMI formulation: There exists an adequate scaling D if the following
feasibility problem has solutions. Find two symmetric matrices X ∈ R6 × 6 and S = DTD ∈ R4 × 4 such
that:

ATX + XA + CTSC XB

BTX −S
< 0,

X > 0,

S > 1 .

You can use the LMI Editor to specify the LMI problem described by these expressions, as shown in
“Specify LMIs with the LMI Editor GUI” on page 5-13. Alternatively, define it at the command line
using lmivar and lmiterm, as follows.

For this example, use the following values for A, B, and C.

A = [  -0.8715    0.5202    0.7474    1.0778   -0.9686    0.1005;
       -0.5577   -1.0843    1.8912    0.2523    1.0641   -0.0345;
       -0.2615   -1.7539   -1.5452   -0.2143    0.0923   -2.4192;
        0.6087   -1.0741    0.1306   -2.5575    2.3213    0.2388;
       -0.7169    0.3582   -1.4195    1.7043   -2.6530   -1.4276;
       -1.2944   -0.6752    1.6983    1.6764   -0.3646   -1.7730 ];
  
B = [       0    0.8998   -0.2130    0.9835;
            0   -0.3001         0   -0.2977;
      -1.0322         0   -1.0431    1.1437;
            0   -0.3451   -0.2701   -0.5316;
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      -0.4189    1.0128   -0.4381         0;
            0         0   -0.4087         0];
 
C = [      0    2.0034         0    1.0289    0.1554    0.7135;
      0.9707    0.9510    0.7059    1.4580   -1.2371    0.3174;
           0         0    1.4158    0.0475   -2.1935    0.4136;
     -0.4383    0.6489   -1.6045    1.7463   -0.3334   -0.5771];

Define the LMI variables X and S, and then specify the terms of each LMI.

setlmis([]) 
X = lmivar(1,[6 1]); 
S = lmivar(1,[2 0;2 1]);

% 1st LMI 
lmiterm([1 1 1 X],1,A,'s');
lmiterm([1 1 1 S],C',C); 
lmiterm([1 1 2 X],1,B); 
lmiterm([1 2 2 S],-1,1);

% 2nd LMI 
lmiterm([-2 1 1 X],1,1);

% 3rd LMI
lmiterm([-3 1 1 S],1,1); 
lmiterm([3 1 1 0],1);

LMISYS = getlmis;

The lmivar commands define the two matrix variables, X and S. The lmiterm commands describe
the terms in each LMI. getlmis returns the internal representation LMISYS of this LMI problem.

For more details on how to use these commands, see:

• “Initializing the LMI System” on page 5-8
• “Specifying the LMI Variables” on page 5-9
• “Specifying Individual LMIs” on page 5-10

For more information about how lmivar updates the internal representation of the LMI problem, see
“How lmivar and lmiterm Manage LMI Representation” on page 5-15.

Initializing the LMI System
The description of an LMI system should begin with setlmis and end with getlmis. The function
setlmis initializes the LMI system description. When specifying a new system, type

setlmis([])

To add on to an existing LMI system with internal representation LMIS0, type

setlmis(LMIS0)

5 LMI Lab
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Specifying the LMI Variables
The matrix variables are declared one at a time with lmivar and are characterized by their
structure. To facilitate the specification of this structure, the LMI Lab offers two predefined structure
types along with the means to describe more general structures:

Type 1 Symmetric block diagonal structure. This corresponds to matrix variables of
the form

X =

D1 0 … 0
0 D2 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 … 0 Dr

where each diagonal block Dj is square and is either zero, a full symmetric
matrix, or a scalar matrix

Dj= d × I,  d ∊ R

This type encompasses ordinary symmetric matrices (single block) and scalar
variables (one block of size one).

Type 2 Rectangular structure. This corresponds to arbitrary rectangular matrices
without any particular structure.

Type 3 General structures. This third type is used to describe more sophisticated
structures and/or correlations between the matrix variables. The principle is as
follows: each entry of X is specified independently as either 0, xn, or –xn where
xn denotes the n-th decision variable in the problem. For details on how to use
Type 3, see “Structured Matrix Variables” on page 5-26 as well as the lmivar
entry in the reference pages.

In “Specify LMI System” on page 5-7, the matrix variables X and S are of Type 1. Indeed, both are
symmetric and S inherits the block-diagonal structure of D. Specifically, S is of the form

S =

s1 0 0 0
0 s1 0 0
0 0 s2 s3
0 0 s3 s4

.

Initialize the description and declare these two matrix variables.

setlmis([])
lmivar(1,[6 1]);     % X 
lmivar(1,[2 0;2 1]); % S

In both lmivar commands, the first input specifies the structure type and the second input contains
additional information about the structure of the variable:

• For a matrix variable X of Type 1, this second input is a matrix with two columns and as many
rows as diagonal blocks in X. The first column lists the sizes of the diagonal blocks and the second
column specifies their nature with the following convention:

1: full symmetric block
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0: scalar block

–1: zero block

In the second command, for instance,[2 0;2 1] means that S has two diagonal blocks, the first
one being a 2-by-2 scalar block and the second one a 2-by-2 full block.

• For matrix variables of Type 2, the second input of lmivar is a two-entry vector listing the row
and column dimensions of the variable. For instance, a 3-by-5 rectangular matrix variable would
be defined by

lmivar(2,[3 5])

For convenience, lmivar also returns a “tag” that identifies the matrix variable for subsequent
reference. For instance, X and S in “Specify LMI System” on page 5-7 could be defined by

X = lmivar(1,[6 1]); 
S = lmivar(1,[2 0;2 1]);

The identifiers X and S are integers corresponding to the ranking of X and S in the list of matrix
variables (in the order of declaration). Here their values would be X=1 and S=2. Note that these
identifiers still point to X and S after deletion or instantiation of some of the matrix variables. Finally,
lmivar can also return the total number of decision variables allocated so far as well as the entry-
wise dependence of the matrix variable on these decision variables (see the lmivar entry in the
reference pages for more details).

Specifying Individual LMIs
After declaring the matrix variables with lmivar, we are left with specifying the term content of each
LMI. Recall that LMI terms fall into three categories:

• The constant terms, i.e., fixed matrices like I in the left side of the LMI S > I.
• The variable terms, i.e., terms involving a matrix variable. For instance, ATX and CTSC in the

expression:

ATX + XA + CTSC XB

BTX −S
< 0

Variable terms are of the form PXQ where X is a variable and P, Q are given matrices called the
left and right coefficients, respectively.

• The outer factors.

When describing the term content of an LMI, specify only the terms in the blocks on or above the
diagonal. The inner factors being symmetric, this is sufficient to specify the entire LMI. Specifying all
blocks results in the duplication of off-diagonal terms, hence in the creation of a different LMI.
Alternatively, you can describe the blocks on or below the diagonal.

LMI terms are specified one at a time with lmiterm. For instance, the LMI

ATX + XA + CTSC XB

BTX −S
< 0

is described by
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lmiterm([1 1 1 1],1,A,'s'); 
lmiterm([1 1 1 2],C',C); 
lmiterm([1 1 2 1],1,B); 
lmiterm([1 2 2 2],-1,1);

These commands successively declare the terms ATX + XA, CTSC, XB, and –S. In each command, the
first argument is a four-entry vector listing the term characteristics as follows:

• The first entry indicates to which LMI the term belongs. The value m means “left side of the m-th
LMI,” and −m means “right side of the m-th LMI.”

• The second and third entries identify the block to which the term belongs. For instance, the vector
[1 1 2 1] indicates that the term is attached to the (1, 2) block.

• The last entry indicates which matrix variable is involved in the term. This entry is 0 for constant
terms, k for terms involving the k-th matrix variable Xk, and −k for terms involving Xk

T (here X and
S are first and second variables in the order of declaration).

Finally, the second and third arguments of lmiterm contain the numerical data (values of the
constant term, outer factor, or matrix coefficients P and Q for variable terms PXQ or PXTQ). These
arguments must refer to existing MATLAB variables and be real-valued. See “Complex-Valued LMIs”
on page 5-28 for the specification of LMIs with complex-valued coefficients.

Some shorthand is provided to simplify term specification. First, blocks are zero by default. Second,
in diagonal blocks the extra argument 's' allows you to specify the conjugated expression AXB +
BTXTAT with a single lmiterm command. For instance, the first command specifies ATX + XA as the
“symmetrization” of XA. Finally, scalar values are allowed as shorthand for scalar matrices, i.e.,
matrices of the form αI with α scalar. Thus, a constant term of the form αI can be specified as the
“scalar” α. This also applies to the coefficients P and Q of variable terms. The dimensions of scalar
matrices are inferred from the context and set to 1 by default. For instance, the third LMI S > I in
“Specify Matrix Variable Structures” on page 5-26 is described by

lmiterm([-3 1 1 2],1,1);      % 1*S*1 = S 
lmiterm([3 1 1 0],1);         % 1*I = I

Recall that by convention S is considered as the right side of the inequality, which justifies the –3 in
the first command.

Finally, to improve readability it is often convenient to attach an identifier (tag) to each LMI and
matrix variable. The variable identifiers are returned by lmivar and the LMI identifiers are set by
the function newlmi. These identifiers can be used in lmiterm commands to refer to a given LMI or
matrix variable. For the LMI system of “Specify LMI System” on page 5-7, this would look like:

setlmis([]) 
X = lmivar(1,[6 1]); 
S = lmivar(1,[2 0;2 1]);

BRL = newlmi; 
lmiterm([BRL 1 1 X],1,A,'s'); 
lmiterm([BRL 1 1 S],C',C);
lmiterm([BRL 1 2 X],1,B); 
lmiterm([BRL 2 2 S],-1,1);

Xpos = newlmi; 
lmiterm([-Xpos 1 1 X],1,1);

Slmi = newlmi;
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lmiterm([-Slmi 1 1 S],1,1);
lmiterm([Slmi 1 1 0],1);

When the LMI system is completely specified, get the internal representation of the problem.

LMISYS = getlmis;

This returns the internal representation LMISYS of this LMI system. This MATLAB description of the
problem can be forwarded to other LMI-Lab functions for subsequent processing. The command
getlmis must be used only once and after declaring all matrix variables and LMI terms.

Here the identifiers X and S point to the variables X and S while the tags BRL, Xpos, and Slmi point
to the first, second, and third LMI, respectively. Note that –Xpos refers to the right-hand side of the
second LMI. Similarly, –X would indicate transposition of the variable X.

See Also
getlmis | lmiterm | lmivar | setlmis

Related Examples
• “Specify LMIs with the LMI Editor GUI” on page 5-13

More About
• “How lmivar and lmiterm Manage LMI Representation” on page 5-15
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Specify LMIs with the LMI Editor GUI
The LMI Editor lmiedit is a graphical user interface (GUI) to specify LMI systems in a
straightforward symbolic manner. Typing

lmiedit

calls up a window with several editable text areas and various buttons.

In more detail, to specify your LMI system,

1 Declare each matrix variable (name and structure) in the upper half of the worksheet. The
structure is characterized by its type (S for symmetric block diagonal, R for unstructured, and G
for other structures) and by an additional “ structure” matrix. This matrix contains specific
information about the structure and corresponds to the second argument of lmivar (see
“Specifying the LMI Variables” on page 5-9 for details).

Please use one line per matrix variable in the text editing areas.
2 Specify the LMIs as MATLAB expressions in the lower half of the worksheet. For instance, the

LMI

ATX + XA XB

BTX −I
< 0

is entered by typing
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[a'*x+x*a x*b; b'*x -1] < 0

if x is the name given to the matrix variable X in the upper half of the worksheet. The left- and
right-hand sides of the LMIs should be valid MATLAB expressions.

Once the LMI system is fully specified, the following tasks can be performed by clicking the
corresponding button:

• Visualize the sequence of lmivar/lmiterm commands needed to describe this LMI system (view
commands button). Conversely, the LMI system defined by a particular sequence of lmivar/
lmiterm commands can be displayed as a MATLAB expression by clicking on the describe...
buttons.

Beginners can use this facility as a tutorial introduction to the lmivar and lmiterm commands.
• Save the symbolic description of the LMI system (save button). This description can be reloaded

later on by clicking the load button.
• Read a sequence of lmivar/lmiterm commands from a file (read button). You can then click on

describe the matrix variables or describe the LMIs to visualize the symbolic expression of the
LMI system specified by these commands. The file should describe a single LMI system but may
otherwise contain any sequence of MATLAB commands.

This feature is useful for code validation and debugging.

Write in a file the sequence of lmivar/lmiterm commands needed to describe a particular LMI
system (write button).

This is helpful to develop code and prototype MATLAB functions based on the LMI Lab.
• Generate the internal representation of the LMI system by clicking create. The result is written in

a MATLAB variable named after the LMI system (if the “name of the LMI system” is set to mylmi,
the internal representation is written in the MATLAB variable mylmi). Note that all LMI-related
data should be defined in the MATLAB workspace at this stage.

The internal representation can be passed directly to the LMI solvers or any other LMI Lab
function.

Keyboard Shortcuts
As with lmiterm, you can use various shortcuts when entering LMI expressions at the keyboard. For
instance, zero blocks can be entered simply as 0 and need not be dimensioned. Similarly, the identity
matrix can be entered as 1 without dimensioning. Finally, upper diagonal LMI blocks need not be fully
specified. Rather, you can just type (*) in place of each such block.

Limitations
Though fairly general, lmiedit is not as flexible as lmiterm and the following limitations should be
kept in mind:

• Parentheses cannot be used around matrix variables. For instance, the expression

(a*x+b)'*c + c'*(a*x+b)

is invalid when x is a variable name. By contrast,
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(a+b)'*x + x'*(a+b)

is perfectly valid.
• Loops and if statements are ignored.
• When turning lmiterm commands into a symbolic description of the LMI system, an error is

issued if the first argument of lmiterm cannot be evaluated. Use the LMI and variable identifiers
supplied by newlmi and lmivar to avoid such difficulties.

How lmivar and lmiterm Manage LMI Representation
Users familiar with MATLAB may wonder how lmivar and lmiterm physically update the internal
representation LMISYS since LMISYS is not an argument to these functions. In fact, all updating is
performed through global variables for maximum speed. These global variables are initialized by
setlmis, cleared by getlmis, and are not visible in the workspace. Even though this artifact is
transparent from the user's viewpoint, be sure to:

• Invoke getlmis only once and after completely specifying the LMI system.
• Refrain from using the command clear global before the LMI system description is ended with

getlmis.

See Also

Related Examples
• “Specify LMI System at the Command Line” on page 5-7
• “Querying the LMI System Description” on page 5-16
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Querying the LMI System Description
Recall that the full description of an LMI system is stored as a single vector called the internal
representation. The user should not attempt to read or retrieve information directly from this vector.
Robust Control Toolbox software provides three functions called lmiinfo, lminbr, and matnbr to
extract and display all relevant information in a user-readable format.

lmiinfo
lminbr is an interactive facility to retrieve qualitative information about LMI systems. This includes
the number of LMIs, the number of matrix variables and their structure, the term content of each
LMI block, etc. To invoke lmiinfo, enter

lmiinfo(LMISYS)

where LMISYS is the internal representation of the LMI system produced by getlmis.

lminbr and matnbr
These two functions return the number of LMIs and the number of matrix variables in the system. To
get the number of matrix variables, for instance, enter

matnbr(LMISYS)

See Also
lmiinfo | lminbr | matnbr

More About
• “LMI Solvers” on page 5-17
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LMI Solvers
LMI solvers are provided for the following three generic optimization problems (here x denotes the
vector of decision variables, i.e., of the free entries of the matrix variables X1, . . . , XK):

• Feasibility problem

Find x ∊ RN (or equivalently matrices X1, . . . , XK with prescribed structure) that satisfies the LMI
system

A(x) < B(x)

The corresponding solver is called feasp.
• Minimization of a linear objective under LMI constraints

Minimize cTx over x ∊ RN subject to A(x) < B(x)

The corresponding solver is called mincx.
• Generalized eigenvalue minimization problem

Minimize λ over x ∊ RN subject to

          C(x) < D(x)

              0 < B(x)

          A(x) < λB(x).

The corresponding solver is called gevp.

Note that A(x) < B(x) above is a shorthand notation for general structured LMI systems with decision
variables x = (x1, . . . , xN).

The three LMI solvers feasp, mincx, and gevp take as input the internal representation LMISYS of
an LMI system and return a feasible or optimizing value x* of the decision variables. The
corresponding values of the matrix variables X1, . . . , XK are derived from x* with the function
dec2mat. These solvers are C-MEX implementations of the polynomial-time Projective Algorithm
Projective Algorithm of Nesterov and Nemirovski [3], [2].

For generalized eigenvalue minimization problems, it is necessary to distinguish between the
standard LMI constraints C(x) < D(x) and the linear-fractional LMIs

A(x) < λB(x)

attached to the minimization of the generalized eigenvalue λ. When using gevp, you should follow
these three rules to ensure proper specification of the problem:

• Specify the LMIs involving λ as A(x) < B(x) (without the λ)
• Specify them last in the LMI system. gevp systematically assumes that the last L LMIs are linear-

fractional if L is the number of LMIs involving λ
• Add the constraint 0 < B(x) or any other constraint that enforces it. This positivity constraint is

required for well-posedness of the problem and is not automatically added by gevp.
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An initial guess xinit for x can be supplied to mincx or gevp. Use mat2dec to derive xinit from
given values of the matrix variables X1, . . . , XK.

The example “Minimize Linear Objectives under LMI Constraints” on page 5-19 illustrates the use of
the mincx solver.

See Also

Related Examples
• “Minimize Linear Objectives under LMI Constraints” on page 5-19
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Minimize Linear Objectives under LMI Constraints
Consider the optimization problem:

Minimize Trace(X) subject to

ATX + XA + XBBTX + Q < 0 (5-4)

with data

A =
−1 −2 1
3 2 1
1 −2 −1

; B =
1
0
1

; Q =
1 −1 0
−1 −3 −12
0 −12 −36

.

It can be shown that the minimizer X* is simply the stabilizing solution of the algebraic Riccati
equation

ATX + XA + XBBTX + Q = 0

This solution can be computed directly with the Riccati solver care and compared to the minimizer
returned by mincx.

From an LMI optimization standpoint, the problem specified in “Equation 5-4” is equivalent to the
following linear objective minimization problem:

Minimize Trace(X) subject to

ATX + XA + Q XB

BTX −I
< 0.  (5-5)

Since Trace(X) is a linear function of the entries of X, this problem falls within the scope of the mincx
solver and can be numerically solved as follows:

1 Define the LMI constraint of “Equation 5-4” by the sequence of commands

setlmis([]) 
X = lmivar(1,[3 1]) % variable X, full symmetric

lmiterm([1 1 1 X],1,a,'s') 
lmiterm([1 1 1 0],q) 
lmiterm([1 2 2 0],-1) 
lmiterm([1 2 1 X],b',1)

LMIs = getlmis
2 Write the objective Trace(X) as cTx where x is the vector of free entries of X. Since c should select

the diagonal entries of X, it is obtained as the decision vector corresponding to X = I, that is,

c = mat2dec(LMIs,eye(3))

Note that the function defcx provides a more systematic way of specifying such objectives (see
“Specifying cTx Objectives for mincx” on page 5-29 for details).

3 Call mincx to compute the minimizer xopt and the global minimum copt = c'*xopt of the
objective:
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options = [1e-5,0,0,0,0] 
[copt,xopt] = mincx(LMIs,c,options)

Here 1e–5 specifies the desired relative accuracy on copt.

The following trace of the iterative optimization performed by mincx appears on the screen:

Solver for linear objective minimization under LMI constraints
Iterations     :     Best objective value so far     

1   
2 -8.511476  
3 -13.063640  
*** new lower bound: -34.023978
4 -15.768450  
*** new lower bound: -25.005604
5 -17.123012  
*** new lower bound: -21.306781
6 -17.882558  
*** new lower bound: -19.819471
7 -18.339853  
*** new lower bound: -19.189417
8 -18.552558  
*** new lower bound: -18.919668
9 -18.646811  
*** new lower bound: -18.803708
10 -18.687324  
*** new lower bound: -18.753903
11 -18.705715  
*** new lower bound: -18.732574
12 -18.712175  
*** new lower bound: -18.723491
13 -18.714880  
*** new lower bound: -18.719624
14 -18.716094  
*** new lower bound: -18.717986
15 -18.716509  
*** new lower bound: -18.717297
16 -18.716695  
*** new lower bound: -18.716873

Result: feasible solution of required accuracy 
    best objective value:     -18.716695 
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    guaranteed relative accuracy:     9.50e-06 
    f-radius saturation: 0.000% of R = 1.00e+09

The iteration number and the best value of cTx at the current iteration appear in the left and
right columns, respectively. Note that no value is displayed at the first iteration, which means
that a feasible x satisfying the constraint (“Equation 5-5”) was found only at the second iteration.
Lower bounds on the global minimum of cTx are sometimes detected as the optimization
progresses. These lower bounds are reported by the message

*** new lower bound: xxx

Upon termination, mincx reports that the global minimum for the objective Trace(X) is –
18.716695 with relative accuracy of at least 9.5×10–6. This is the value copt returned by mincx.

4 mincx also returns the optimizing vector of decision variables xopt. The corresponding optimal
value of the matrix variable X is given by

Xopt = dec2mat(LMIs,xopt,X)

which returns

Xopt =
−6.3542 −5.8895 2.2046
−5.8895 −6.2855 2.2201
2.2046 2.2201 −6.0771

.

This result can be compared with the stabilizing Riccati solution computed by care:

Xst = care(a,b,q,-1) 
norm(Xopt-Xst)

ans = 
    6.5390e-05

See Also

Related Examples
• “Conversion Between Decision and Matrix Variables” on page 5-22
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Conversion Between Decision and Matrix Variables
While LMIs are specified in terms of their matrix variables X1, . . . , XK , the LMI solvers optimize the
vector x of free scalar entries of these matrices, called the decision variables. The two functions
mat2dec and dec2mat perform the conversion between these two descriptions of the problem
variables.

Consider an LMI system with three matrix variables X1, X2, X3. Given particular values X1, X2, X3 of
these variables, the corresponding value xdec of the vector of decision variables is returned by
mat2dec:

xdec = mat2dec(LMISYS,X1,X2,X3)

An error is issued if the number of arguments following LMISYS differs from the number of matrix
variables in the problem (see matnbr).

Conversely, given a value xdec of the vector of decision variables, the corresponding value of the k-th
matrix is given by dec2mat. For instance, the value X2 of the second matrix variable is extracted
from xdec by

X2 = dec2mat(LMISYS,xdec,2)

The last argument indicates that the second matrix variable is requested. It could be set to the matrix
variable identifier returned by lmivar.

The total numbers of matrix variables and decision variables are returned by matnbr and decnbr,
respectively. In addition, the function decinfo provides precise information about the mapping
between decision variables and matrix variable entries.

See Also

Related Examples
• “Validating Results” on page 5-23

5 LMI Lab

5-22



Validating Results
The LMI Lab offers two functions to analyze and validate the results of an LMI optimization. The
function evallmi evaluates all variable terms in an LMI system for a given value of the vector of
decision variables, for instance, the feasible or optimal vector returned by the LMI solvers. Once this
evaluation is performed, the left and right sides of a particular LMI are returned by showlmi.

In the LMI problem considered in “Minimize Linear Objectives under LMI Constraints” on page 5-19,
you can verify that the minimizer xopt returned by mincx satisfies the LMI constraint
(“Equation 5-5”) as follows:

evlmi = evallmi(LMIs,xopt) 
[lhs,rhs] = showlmi(evlmi,1)

The first command evaluates the system for the value xopt of the decision variables, and the second
command returns the left and right sides of the first (and only) LMI. The negative definiteness of this
LMI is checked by

eig(lhs-rhs)

ans = 
    -2.0387e-04 
    -3.9333e-05 
    -1.8917e-07 
    -4.6680e+01

See Also

Related Examples
• “Modify a System of LMIs” on page 5-24
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Modify a System of LMIs
Once specified, a system of LMIs can be modified in several ways with the functions dellmi,
delmvar, and setmvar.

Deleting an LMI
The first possibility is to remove an entire LMI from the system with dellmi. For instance, suppose
that the LMI system of “Specify LMI System” on page 5-7 is described in LMISYS and that we want to
remove the positivity constraint on X. This is done by

NEWSYS = dellmi(LMISYS,2)

where the second argument specifies deletion of the second LMI. The resulting system of two LMIs is
returned in NEWSYS.

The LMI identifiers (initial ranking of the LMI in the LMI system) are not altered by deletions. As a
result, the last LMI

S > I

remains known as the third LMI even though it now ranks second in the modified system. To avoid
confusion, it is safer to refer to LMIs via the identifiers returned by newlmi. If BRL, Xpos, and Slmi
are the identifiers attached to the three LMIs described in “Specify LMI System” on page 5-7, Slmi
keeps pointing to S > I even after deleting the second LMI by

NEWSYS = dellmi(LMISYS,Xpos)

Deleting a Matrix Variable
Another way of modifying an LMI system is to delete a matrix variable, that is, to remove all variable
terms involving this matrix variable. This operation is performed by delmvar. For instance, consider
the LMI

ATX + XA + BW + WTBT + I < 0

with variables X = XT ∊ R4×4 and W ∊ R2×4. This LMI is defined by

setlmis([]) 
X = lmivar(1,[4 1])     % X 
W = lmivar(2,[2 4])     % W

lmiterm([1 1 1 X],1,A,'s') 
lmiterm([1 1 1 W],B,1,'s') 
lmiterm([1 1 1 0],1)

LMISYS = getlmis

To delete the variable W, type the command

NEWSYS = delmvar(LMISYS,W)

The resulting NEWSYS now describes the Lyapunov inequality

ATX + XA + I < 0
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Note that delmvar automatically removes all LMIs that depended only on the deleted matrix
variable.

The matrix variable identifiers are not affected by deletions and continue to point to the same matrix
variable. For subsequent manipulations, it is therefore advisable to refer to the remaining variables
through their identifier. Finally, note that deleting a matrix variable is equivalent to setting it to the
zero matrix of the same dimensions with setmvar.

Instantiating a Matrix Variable
The function setmvar is used to set a matrix variable to some given value. As a result, this variable is
removed from the problem and all terms involving it become constant terms. This is useful, for
instance, to fixsetmvar some variables and optimize with respect to the remaining ones.

Consider again “Specify LMI System” on page 5-7 and suppose we want to know if the peak gain of G
itself is less than one, that is, if

∥G∥∞ < 1

This amounts to setting the scaling matrix D (or equivalently, S = DTD) to a multiple of the identity
matrix. Keeping in mind the constraint S > I, a legitimate choice is S = 2-βψ-I. To set S to this value,
enter

NEWSYS = setmvar(LMISYS,S,2)

The second argument is the variable identifier S, and the third argument is the value to which S
should be set. Here the value 2 is shorthand for 2-by-I. The resulting system NEWSYS reads

ATX + XA + 2CTC XB

BTX −2I
< 0

X > 0
2I > I .

Note that the last LMI is now free of variable and trivially satisfied. It could, therefore, be deleted by

NEWSYS = dellmi(NEWSYS,3)

or

NEWSYS = dellmi(NEWSYS,Slmi)

if Slmi is the identifier returned by newlmi.

See Also

Related Examples
• “Advanced LMI Techniques” on page 5-26
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Advanced LMI Techniques
This last section gives a few hints for making the most out of the LMI Lab. It is directed toward users
who are comfortable with the basics, as described in “Tools for Specifying and Solving LMIs” on page
5-2.

Structured Matrix Variables
Fairly complex matrix variable structures and interdependencies can be specified with lmivar.
Recall that the symmetric block-diagonal or rectangular structures are covered by Types 1 and 2 of
lmivar provided that the matrix variables are independent. To describe more complex structures or
correlations between variables, you must use Type 3 and specify each entry of the matrix variables
directly in terms of the free scalar variables of the problem (the so-called decision variables).

With Type 3, each entry is specified as either 0 or ±xn where xn is the n-th decision variable. The
following examples illustrate how to specify nontrivial matrix variable structures with lmivar. The
following examples show variable structures with uncorrelated and interdependent matrix variables.

Specify Matrix Variable Structures

Suppose that the variables of the problem include a 3-by-3 symmetric matrix X and a 3-by-3
symmetric Toeplitz matrix, Y, given by:

Y =
y1 y2 y3

y2 y1 y2
y3 y2 y1

.

The variable Y has three independent entries, and thus involves three decision variables. Since Y is
independent of X, label these decision variables n + 1, n + 2, and n + 3, where n is the number of
decision variables involved in X. To retrieve this number, define the Type 1 variable X.

setlmis([]) 
[X,n] = lmivar(1,[3 1]);
n

n = 6

The second output argument n gives the total number of decision variables used so far, which in this
case is n = 6. Given this number, you can define Y.

Y = lmivar(3,n+[1 2 3;2 1 2;3 2 1]);

An equivalent expression to define Y uses the MATLAB(R) command toeplitz to generate the
matrix.

Y = lmivar(3,toeplitz(n+[1 2 3]));

To confirm the variables, visualize the decision variable distributions in X and Y using decinfo.

lmis = getlmis; 
decinfo(lmis,X)

ans = 3×3
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     1     2     4
     2     3     5
     4     5     6

decinfo(lmis,Y)

ans = 3×3

     7     8     9
     8     7     8
     9     8     7

Specify Interdependent Matrix Variables

Consider three matrix variables, X, Y, and Z, with the following structure.

X =
x 0
0 y

, Y =
z 0
0 t

, Z =
0 −x
−t 0

,

where x, y, z, and t are independent scalar variables. To specify such a triple, first define the two
independent variables, X and Y, which are both Type 1.

setlmis([]); 
[X,n,sX] = lmivar(1,[1 0;1 0]);
[Y,n,sY] = lmivar(1,[1 0;1 0]);

The third output of lmivar gives the entry-wise dependence of X and Y on the decision variables
x1, x2, x3, x4 : = x, y, z, t .

sX

sX = 2×2

     1     0
     0     2

sY

sY = 2×2

     3     0
     0     4

Using lmivar, you can now specify the structure of the Type 3 variable Z in terms of the decision
variables x1 = x and x4 = t.

[Z,n,sZ] = lmivar(3,[0 -sX(1,1);-sY(2,2) 0]);

Because sX(1,1) refers to x1 and sY(2,2) refers to x4, this expression defines the variable Z as:

Z =
0 −x1
−x4 0

=
0 −x
−t 0

.
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Confirm this results by checking the entry-wise dependence of Z on its decision variables.

sZ

sZ = 2×2

     0    -1
    -4     0

Complex-Valued LMIs
The LMI solvers are written for real-valued matrices and cannot directly handle LMI problems
involving complex-valued matrices. However, complex-valued LMIs can be turned into real-valued
LMIs by observing that a complex Hermitian matrix L(x) satisfies

L(x) < 0

if and only if

Re L x Im L x
−Im L x Re L x

< 0.

This suggests the following systematic procedure for turning complex LMIs into real ones:

• Decompose every complex matrix variable X as

X = X1 + jX2

where X1 and X2 are real
• Decompose every complex matrix coefficient A as

A = A1 + jA2

where A1 and A2 are real
• Carry out all complex matrix products. This yields affine expressions in X1, X2 for the real and

imaginary parts of each LMI, and an equivalent real-valued LMI is readily derived from the above
observation.

For LMIs without outer factor, a streamlined version of this procedure consists of replacing any
occurrence of the matrix variable X = X1 + jX2 by

X1 X2
−X2 X1

and any fixed matrix A = A1 + jA2, including real ones, by

A1 A2
−A2 A1

.

For instance, the real counterpart of the LMI system
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MHXM < X,    X = XH > I (5-6)

reads (given the decompositions M = M1 + jM2 and X = X1 + jX2 with Mj, Xj real):

M1 M2
−M2 M1

T X1 X2
−X2 X1

M1 M2
−M2 M1

<
X1 X2
−X2 X1

X1 X2
−X2 X1

< I .

Note that X = XH in turn requires that X1 = X1
H and X2 + X2

T = 0. Consequently, X1 and X2 should be
declared as symmetric and skew- symmetric matrix variables, respectively.

Assuming, for instance, that M ∊ C5×5, the LMI system (“Equation 5-6”) would be specified as follows:

M1=real(M), M2=imag(M) 
bigM=[M1 M2;-M2 M1] 
setlmis([])

% declare bigX=[X1 X2;-X2 X1] with X1=X1' and X2+X2'=0:

[X1,n1,sX1] = lmivar(1,[5 1]) 
[X2,n2,sX2] = lmivar(3,skewdec(5,n1)) 
bigX = lmivar(3,[sX1 sX2;-sX2 sX1])

% describe the real counterpart of (1.12):

lmiterm([1 1 1 0],1) 
lmiterm([-1 1 1 bigX],1,1) 
lmiterm([2 1 1 bigX],bigM',bigM) 
lmiterm([-2 1 1 bigX],1,1)

lmis = getlmis

Note the three-step declaration of the structured matrix variable bigX,

bigX =
X1 X2
−X2 X1

.

1 Specify X1 as a (real) symmetric matrix variable and save its structure description sX1 as well as
the number n1 of decision variables used in X1.

2 Specify X2 as a skew-symmetric matrix variable using Type 3 of lmivar and the utility skewdec.
The command skewdec(5,n1) creates a 5-by–5 skew-symmetric structure depending on the
decision variables n1 + 1, n1 + 2,...

3 Define the structure of bigX in terms of the structures sX1 and sX2 of X1 and X2.

See “Structured Matrix Variables” on page 5-26 for more details on such structure manipulations.

Specifying cTx Objectives for mincx
The LMI solver mincx minimizes linear objectives of the form cTx where x is the vector of decision
variables. In most control problems, however, such objectives are expressed in terms of the matrix
variables rather than of x. Examples include Trace(X) where X is a symmetric matrix variable, or uTXu
where u is a given vector.
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The function defcx facilitates the derivation of the c vector when the objective is an affine function
of the matrix variables. For the sake of illustration, consider the linear objective

Trace X + x0
TPx0

where X and P are two symmetric variables and x0 is a given vector. If lmsisys is the internal
representation of the LMI system and if x0, X, P have been declared by

x0 = [1;1] 
setlmis([]) 
X = lmivar(1,[3 0]) 
P = lmivar(1,[2 1]) 
    : 
    : 
lmisys = getlmis

the c vector such that cTx = Trace X + x0
TPx0 can be computed as follows:

n = decnbr(lmisys) 
c = zeros(n,1)

for j=1:n, 
    [Xj,Pj] = defcx(lmisys,j,X,P) 
    c(j) = trace(Xj) + x0'*Pj*x0 
end

The first command returns the number of decision variables in the problem and the second command
dimensions c accordingly. Then the for loop performs the following operations:

1 Evaluate the matrix variables X and P when all entries of the decision vector x are set to zero
except xj: = 1. This operation is performed by the function defcx. Apart from lmisys and j, the
inputs of defcx are the identifiers X and P of the variables involved in the objective, and the
outputs Xj and Pj are the corresponding values.

2 Evaluate the objective expression for X:= Xj and P:= Pj. This yields the j-th entry of c by
definition.

In our example the result is

c = 
    3 
    1     
    2
    1

Other objectives are handled similarly by editing the following generic skeleton:

n = decnbr( LMI system ) 
c = zeros(n,1) 
for j=1:n, 
    [ matrix values ] = defcx( LMI system,j,
matrix identifiers) 
    c(j) = objective(matrix values) 
end

5 LMI Lab

5-30



Feasibility Radius
When solving LMI problems with feasp, mincx, or gevp, it is possible to constrain the solution x to
lie in the ball

xTx < R2

where R > 0 is called the feasibility radius. This specifies a maximum (Euclidean norm) magnitude for
x and avoids getting solutions of very large norm. This may also speed up computations and improve
numerical stability. Finally, the feasibility radius bound regularizes problems with redundant variable
sets. In rough terms, the set of scalar variables is redundant when an equivalent problem could be
formulated with a smaller number of variables.

The feasibility radius R is set by the third entry of the options vector of the LMI solvers. Its default
value is R = 109. Setting R to a negative value means “no rigid bound,” in which case the feasibility
radius is increased during the optimization if necessary. This “flexible bound” mode may yield
solutions of large norms.

Well-Posedness Issues
The LMI solvers used in the LMI Lab are based on interior-point optimization techniques. To compute
feasible solutions, such techniques require that the system of LMI constraints be strictly feasible, that
is, the feasible set has a nonempty interior. As a result, these solvers may encounter difficulty when
the LMI constraints are feasible but not strictly feasible, that is, when the LMI

L(x) ≤ 0

has solutions while

L(x) < 0

has no solution.

For feasibility problems, this difficulty is automatically circumvented by feasp, which reformulates
the problem:

Find x such that

L(x) ≤ 0 (5-7)

as:

Minimize t subject to

Lx < t × I.

In this modified problem, the LMI constraint is always strictly feasible in x, t and the original LMI
“Equation 5-7” is feasible if and only if the global minimum tmin of “Equation 5-7” satisfies

tmin ≤ 0

For feasible but not strictly feasible problems, however, the computational effort is typically higher as
feasp strives to approach the global optimum tmin = 0 to a high accuracy.
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For the LMI problems addressed by mincx and gevp, nonstrict feasibility generally causes the
solvers to fail and to return an “infeasibility” diagnosis. Although there is no universal remedy for this
difficulty, it is sometimes possible to eliminate underlying algebraic constraints to obtain a strictly
feasible problem with fewer variables.

Another issue has to do with homogeneous feasibility problems such as

ATP + P A < 0, P > 0

While this problem is technically well-posed, the LMI optimization is likely to produce solutions close
to zero (the trivial solution of the nonstrict problem). To compute a nontrivial Lyapunov matrix and
easily differentiate between feasibility and infeasibility, replace the constraint P > 0-by-P > αI with α
> 0. Note that this does not alter the problem due to its homogeneous nature.

Semi-Definite B(x) in gevp Problems
Consider the generalized eigenvalue minimization problem

Minimize λ subject to

A(x) < λB(x), B(x) > 0, C(x) <0. (5-8)

Technically, the positivity of B(x) for some x ∊ Rn is required for the well-posedness of the problem
and the applicability of polynomial-time interior-point methods. Hence problems where

B x =
B1 x 0

0 0

with B1(x) > 0 strictly feasible, cannot be directly solved with gevp. A simple remedy consists of
replacing the constraints

A(x) < B(x), B(x) > 0

by

A x <
Y 0
0 0

, Y < λB1 x , B1 x > 0

where Y is an additional symmetric variable of proper dimensions. The resulting problem is
equivalent to “Equation 5-8” and can be solved directly with gevp.

Efficiency and Complexity Issues
As explained in “Tools for Specifying and Solving LMIs” on page 5-2, the term-oriented description of
LMIs used in the LMI Lab typically leads to higher efficiency than the canonical representation

A0 + x1A1 + ... + xNAN < 0. (5-9)

This is no longer true, however, when the number of variable terms is nearly equal to or greater than
the number N of decision variables in the problem. If your LMI problem has few free scalar variables
but many terms in each LMI, it is therefore preferable to rewrite it as “Equation 5-9” and to specify it
in this form. Each scalar variable xj is then declared independently and the LMI terms are of the form
xjAj.
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If M denotes the total row size of the LMI system and N the total number of scalar decision variables,
the flop count per iteration for the feasp and mincx solvers is proportional to

• N3 when the least-squares problem is solved via Cholesky factorization of the Hessian matrix
(default) [2].

• M-by-N2 when numerical instabilities warrant the use of QR factorization instead.

While the theory guarantees a worst-case iteration count proportional to M, the number of iterations
actually performed grows slowly with M in most problems. Finally, while feasp and mincx are
comparable in complexity, gevp typically demands more computational effort. Make sure that your
LMI problem cannot be solved with mincx before using gevp.

Solving M + PTXQ + QTXTP < 0
In many output-feedback synthesis problems, the design can be performed in two steps:

1 Compute a closed-loop Lyapunov function via LMI optimization.
2 Given this Lyapunov function, derive the controller state-space matrices by solving an LMI of the

form

M + PTXQ + QTXTP < 0 (5-10
)

where M, P, Q are given matrices and X is an unstructured m-by-n matrix variable.

It turns out that a particular solution Xc of “Equation 5-10” can be computed via simple linear algebra
manipulations [1]. Typically, Xc corresponds to the center of the ellipsoid of matrices defined by
“Equation 5-10”.

The function basiclmi returns the “explicit” solution Xc:

Xc = basiclmi(M,P,Q)

Since this central solution sometimes has large norm, basiclmi also offers the option of computing
an approximate least-norm solution of “Equation 5-10”. This is done by

X = basiclmi(M,P,Q,'Xmin')

and involves LMI optimization to minimize ∥X ∥.

See Also

More About
• “Tools for Specifying and Solving LMIs” on page 5-2
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Analyzing Uncertainty Effects in
Simulink

• “Analyzing Uncertainty in Simulink” on page 6-2
• “Specify Uncertainty Using Uncertain State Space Blocks” on page 6-4
• “Simulate Uncertainty Effects” on page 6-7
• “Simulate Uncertain Model at Sampled Parameter Values” on page 6-8
• “Vary Uncertain Values Across Multiple Uncertain Blocks” on page 6-14
• “Compute Uncertain State-Space Models from Simulink Models” on page 6-19
• “Linearize Simulink Block to Uncertain Model” on page 6-23
• “Stability Margins of a Simulink Model” on page 6-28
• “Robustness Analysis in Simulink” on page 6-35
• “Linearization of Simulink Models with Uncertainty” on page 6-46
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Analyzing Uncertainty in Simulink
Robust Control Toolbox software provides tools to model uncertain dynamics in Simulink. Using these
tools, you can analyze how the uncertainty impacts the time-domain and frequency-domain behavior
of a Simulink model.

The Uncertain State Space block, included in the Robust Control Toolbox block library, is a
convenient way to incorporate uncertainty information in a Simulink model. For more information,
see “Specify Uncertainty Using Uncertain State Space Blocks” on page 6-4. Using this block, you
can perform the following types of analysis:

• Vary the uncertainty and see how it affects the time responses (Monte Carlo analysis). See
“Simulate Uncertainty Effects” on page 6-7.

• Analyze the effects of uncertainty on the linearized dynamics:

• If the operating point does not depend on the parameter uncertainty, use ulinearize to
obtain an uncertain state-space model. You can then use usample to sample the uncertain
variables and obtain a family of LTI models.

• If the operating point depends on the parameter uncertainty, use usample to sample the
uncertainty and then use the Simulink Control Design™ linearize command to compute the
linearized dynamics for each uncertainty value.

See “How to Vary Uncertainty Values” on page 6-7 and “Obtain Uncertain State-Space
Model from Simulink Model” on page 6-19.

• Compute an uncertain linearization, i.e., obtain an uncertain state-space model (uss object) that
combines the uncertain variables with the linearized dynamics. You can use this model to perform
worst-case robustness analysis. See “Obtain Uncertain State-Space Model from Simulink Model”
on page 6-19.

If you cannot use Uncertain State Space blocks in the Simulink model because you share the model or
generate code, you can still compute an uncertain linearization by specifying a block to linearize to an
uncertain variable. For example, you can specify a gain block to linearize to an uncertain real
parameter (ureal). See “Specify Uncertain Linearization for Core or Custom Simulink Blocks” on
page 6-19. You can then use the uncertain state-space model to analyze robustness in the linear
operating range.

Simulink Blocks for Analyzing Uncertainty
Robust Control Toolbox software provides an Uncertain State Space block to model parametric and
dynamic uncertainty in Simulink. The block library also contains a MultiPlot Graph block that you use
with the Uncertain State Space block to plot and visualize Monte Carlo simulation responses.

To open the Robust Control Toolbox block library, type the following command at the MATLAB
prompt:

RCTblocks 

The block library opens, as shown in the following figure.
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Alternatively, in a Simulink model window, click  to launch to Library Browser. In the Library
Browser, select Robust Control Toolbox.

See Also
Uncertain State Space | linearize | ulinearize

Related Examples
• “Obtain Uncertain State-Space Model from Simulink Model” on page 6-19
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Specify Uncertainty Using Uncertain State Space Blocks

How to Specify Uncertainty in Uncertain State Space Blocks
Specifying uncertainty in the Uncertain State Space block makes the uncertainty a part of the
Simulink model and affects both simulation and linearization. Use this approach to vary the
uncertainty and analyze the effects on simulation or linearization.

To specify uncertainty in the Uncertain State Space block:

1 Drag and drop an Uncertain State Space block from the Robust Control Toolbox block library into
a Simulink model. For more information on how to open the block library, see “Simulink Blocks
for Analyzing Uncertainty” on page 6-2.

2 In the Simulink model, double-click the Uncertain State Space block to open the Function Block
Parameters: Uncertain State Space dialog box, as shown in the following figure.
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3 Specify an uncertain state-space model in the Uncertain system variable (uss) field. The
model must be an uss object or any other model that can be converted to uss, such as umat,
ureal, umargin, and ultidyn. The model depends on a set of uncertain variables (ureal,
umargin, or ultidyn) and you can specify the model as one of the following:

• Function or expression that evaluates to an uss model. For example,
ss(ureal('a',-5),5,1,1).

• Variable, defined in the MATLAB workspace. For example, unc_sys, where unc_sys is
defined as ss(ureal('a',-5),5,1,1) in the workspace.

4 Specify values for the uncertain variables that the uncertain state-space model you specify in
step 3 uses. For example, if you specify the uncertain system as ureal('g',2)*tf(1,
[ureal('tau'),1]), then you must specify values for the uncertain variables g and tau. To do
so, enter a structure with fields g and tau in the Uncertainty value (struct or [] to use
nominal value) field. You can also enter [] to use the nominal values of the uncertain
parameters g and tau.
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Tip: You can also use this field to vary the uncertainty values for performing Monte Carlo
simulation. For more information, see “Simulate Uncertainty Effects” on page 6-7.

5 (Optional) Specify the initial states of the nominal and uncertain dynamics in the Initial states
(nominal dynamics) and Initial states (uncertain dynamics) fields, respectively.

For more information on the block parameters, see the Uncertain State Space block reference page.

Next Steps
After you specify uncertainty in Uncertain State Space blocks, you can perform one of the following:

• Simulate the model using nominal, manually-defined or random values, as described in “Simulate
Uncertainty Effects” on page 6-7.

• Perform an uncertain linearization, as described in “Obtain Uncertain State-Space Model from
Simulink Model” on page 6-19.
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Simulate Uncertainty Effects

How to Simulate Effects of Uncertainty
As described in “Specify Uncertainty Using Uncertain State Space Blocks” on page 6-4, the uncertain
state-space model you specify in the Uncertain State Space block depends on a set of uncertain
variables (ureal, umargin, or ultidyn objects.) You can simulate the model using nominal value of
these uncertain variables. Additionally, you can sample these uncertain variables and simulate the
model for various values in the uncertainty range (Monte Carlo simulation.) For more information,
see “How to Vary Uncertainty Values” on page 6-7. You can view and compare the simulation
results for various sample values of uncertainty using the MultiPlot Graph block.

How to Vary Uncertainty Values
There are two ways to control the uncertainty values using the Uncertainty value (struct or [] to
use nominal value) field of the Uncertain State Space block parameters dialog box:

• For simple models with few uncertain variables or one Uncertain State Space block, type the value
in the Uncertain State Space block itself. For more information, see “Simulate Uncertain Model at
Sampled Parameter Values” on page 6-8.

• For complex models with large number of uncertain variables or Uncertain State Space blocks,
use a single data structure for all uncertain variables referenced by the model. Using this
approach, you can collectively control the values of all or a subset of uncertain variables and
toggle between nominal and user-defined values from the MATLAB prompt. For more information,
see “Vary Uncertain Values Across Multiple Uncertain Blocks” on page 6-14.
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Simulate Uncertain Model at Sampled Parameter Values
This example shows how to simulate an uncertain model in Simulink® using the Uncertain State
Space block. You can sample uncertain parameters at specified values or generate random samples.
The MultiPlot Graph block lets you visualize the responses of multiple samples on the same plot.

Uncertain Model

The simple model rctUncertainModel contains an Uncertain State Space block with a step input.
The step response signal feeds a MultiPlot Graph block.

mdl = "rctUncertainModel";
open_system(mdl)

By default, the Uncertain State Space block is configured to simulate the uncertain model
ss(ureal('a',-5),5,1,1), which is a uss model with one uncertain parameter. For this example,
create a model of a mass-spring damper system with an uncertain spring constant and damping
constant.

m = 3;
c = ureal('c',1,'Percentage',20);
k = ureal('k',2,'Percentage',30);
usys = tf(1,[m c k])

usys =

  Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 2 states.
  The model uncertainty consists of the following blocks:
    c: Uncertain real, nominal = 1, variability = [-20,20]%, 1 occurrences
    k: Uncertain real, nominal = 2, variability = [-30,30]%, 1 occurrences

Type "usys.NominalValue" to see the nominal value, "get(usys)" to see all properties, and "usys.Uncertainty" to interact with the uncertain elements.

To simulate this system, in the block parameters, enter usys for the Uncertain system variable
parameter.

Alternatively, set the parameter value at the command line.

ublk = strcat(mdl,"/Uncertain State Space");
set_param(ublk,"USystem","usys");
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Simulate Nominal Model

To simulate the model, Simulink must set the uncertain parameters in usys to specific, non-uncertain
values. Use the Uncertainty value parameter to specify these values. By default, this parameter is
set to [], which causes Simulink to use the nominal values of all uncertain parameters.

Simulate the model. The MultiPlot Graph block generates a plot of the nominal model response to the
step input signal.

sim(mdl);

Simulate Specified Samples

To simulate the uncertain model with the uncertain parameters set to values other than the nominal
values, set the Uncertainty value parameter to a structure whose fields are the uncertain elements
of the uss model. For instance, create a structure samps that sets the damping constant to 1.2 and
the spring constant to 1.7.

samps = struct('c',1.2,'k',1.7);

Set the Uncertainty value parameter to samps, and simulate the model. The MultiPlot Graph block
adds this new system response to the same axis as the previous response.
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set_param(ublk,"UValue","samps");
sim(mdl);

Simulate Random Samples

You can use the usample command to generate samples of usys at random values of the uncertain
parameters. The command uvars = ufind(mdl) generates a structure containing all the uncertain
parameters in the model.

uvars = ufind(mdl);
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usample takes random samples of these parameters and returns a structure you can use for the
Uncertainty value parameter. Set Uncertainty value to usample(uvars), and simulate the model.

set_param(ublk,"UValue","usample(uvars)");
sim(mdl);
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The step response of the randomly sampled instance of usys is added to the MultiPlot Graph block.
Simulate the model ten more times. Each time, usample generates new values for c and k, and the
plot is updated with another step response.

for i=1:10
    sim(mdl);
end
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See Also
MultiPlot Graph | Uncertain State Space

Related Examples
• “Vary Uncertain Values Across Multiple Uncertain Blocks” on page 6-14
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Vary Uncertain Values Across Multiple Uncertain Blocks
This example shows how to simulate a Simulink® model containing multiple Uncertain State Space
blocks. You can sample all the uncertain blocks at once using the uvars command. This approach is
useful when your model contains large numbers of uncertain variables or Uncertain State Space
blocks.

Uncertain Model

Open the model rctMultiUncertainModel.

mdl = "rctMultiUncertainModel";
open_system(mdl)

The model is contains two Uncertain State Space blocks. The Unmodeled dynamics block is
preconfigured to represent uncertain dynamics with a frequency-dependent weight of the form
wt*input_unc.

input_unc = ultidyn('input_unc',[1 1]);
wt = makeweight(0.25,130,2.5);

The other uncertain block is configured to represent a first-order system with an uncertain pole
location.

unc_sys = ss(ureal('a',-1,'Range',[-2 -.5]),1,5,0);

A step input feeds the uncertain system, and the MultiPlot Graph block shows the system.

Simulate Nominal Model

To simulate the model, Simulink must set the uncertain parameters in both of these blocks to specific,
non-uncertain values. Use the Uncertainty value parameter to specify these values. In
rctMultiUncertainModel, both blocks are preconfigured to use the workspace variable vals for
that parameter. To simulate the model using the nominal values of all uncertain parameters, set vals
= [].

vals = [];
sim(mdl);
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Generate Random Sample of All Uncertain Parameters

The ufind command finds all uncertain parameters in all the Uncertain State Space blocks across
the entire model, and returns a structure containing their names and values.

uvars = ufind(mdl)

uvars = 

  struct with fields:

            a: [1x1 ureal]
    input_unc: [1x1 ultidyn]
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Use usample to generate a random sample of the uncertain parameters in uvars. Set vals to this
sample value.

vals = usample(uvars)

vals = 

  struct with fields:

            a: -0.7779
    input_unc: [1x1 ss]

The Uncertainty value parameter in each Uncertain State Space block is already set to vals. When
you simulate the model, for each block, Simulink uses the value in vals that corresponds to the
uncertain parameters in that block.

sim(mdl)
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Simulate Multiple Random Samples

To simulate the model at multiple random values, repeat the process of generating random values for
vals inside a for loop. Each time, usample generates new values for the uncertain elements in the
model, and the plot is updated with another step response.

for i=1:10
    vals = usample(uvars);
    sim(mdl);
end
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See Also
MultiPlot Graph | Uncertain State Space

Related Examples
• “Simulate Uncertain Model at Sampled Parameter Values” on page 6-8
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Compute Uncertain State-Space Models from Simulink Models
When you have the Simulink Control Design software, you can compute an uncertain linearization,
i.e., an uncertain state-space model (uss) combining the uncertain variables with linearized
dynamics. Use the uss model to perform linear analysis and robust control design.

You can compute an uncertain linearization in one of the following ways:

• Using the ulinearize command, as described in “Obtain Uncertain State-Space Model from
Simulink Model” on page 6-19.

• Using the Simulink Control Design linearize command, as described in “Specify Uncertain
Linearization for Core or Custom Simulink Blocks” on page 6-19.

Obtain Uncertain State-Space Model from Simulink Model
To obtain an uncertain state-space model from a model that contains Uncertain State Space blocks,
use the following steps:

Note If you do not have Uncertain State Space blocks in the model but still want to obtain an
uncertain state-space model, see “Specify Uncertain Linearization for Core or Custom Simulink
Blocks” on page 6-19.

1 (Prerequisite) Create or open the Simulink model.
2 (Prerequisite) In the Simulink model, specify the linearization input and output points using

Simulink Control Design getlinio or linio commands. For more information, see “Specify
Portion of Model to Linearize” (Simulink Control Design).

3 (Prerequisite) If you have not already done so, specify uncertainty in the Simulink model as
described in “Specify Uncertainty Using Uncertain State Space Blocks” on page 6-4.

Note The software does not evaluate the uncertain variables during linearization. Thus, the
value of the uncertainty does not affect the linearization.

4 Run ulinearize to compute an uncertain linearization. This command returns an uss model.

Note If you use the Simulink Control Design linearize command, the Uncertain State Space
blocks linearize to their nominal value.

For more information on linearization and how to evaluate the results, see “Linearization Basics”
(Simulink Control Design).

For an example of how to use the Simulink Control Design linearize command, see “Linearization
of Simulink Models with Uncertainty” on page 6-46.

Specify Uncertain Linearization for Core or Custom Simulink Blocks
In some cases, you cannot use Uncertain State Space blocks in the Simulink model because you share
the model or generate code. You can still account for uncertainty in your linear analysis without
specifying uncertainty using Uncertain State Space blocks. Robust Control Toolbox lets you specify a
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core or custom Simulink block to linearize to an uncertain variable. The linearization produces an
uncertain state-space uss model. The specified uncertainty associates only with the block and does
not affect the model simulation. For more information, see “Specify Linear System for Block
Linearization Using MATLAB Expression” (Simulink Control Design).

Note If you have Uncertain State Space blocks in the model and want to obtain an uncertain state-
space model, see “Obtain Uncertain State-Space Model from Simulink Model” on page 6-19.

To specify blocks to linearize to uncertain variables and obtain an uncertain state-space model:

1 (Prerequisites) Create or open the Simulink model. Specify linearization input and output points
using the Simulink Control Design getlinio or linio commands.

For this example, you can open the model rct_ulinearize_builtin.
2 Specify a block to linearize to an uncertain variable:

a Right-click the block and select Linear Analysis > Specify Selected Block Linearization.

This action opens the Block Linearization Specification dialog box.
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b In the Block Linearization Specification dialog box, select the Specify block linearization
using one of the following: check box. Selecting this check box lets you to specify an
uncertain variable for linearization.

This check box defaults to MATLAB Expression in the drop-down menu. This option lets
you specify the block to linearize to an uncertain variable using a MATLAB expression
containing Robust Control Toolbox functions. To learn more about the options, see “Specify
Linear System for Block Linearization Using MATLAB Expression” (Simulink Control
Design).

c In the Enter an expression to specify the linearization of the Simulink block field,
enter an expression, which must evaluate to an uncertain variable or uncertain model, such
as ureal, umat, ultidyn, umargin, or uss.

d Click OK to save the changes.

Note You can also specify a block to linearize to an uncertain variable at the command line.
For an example, see “Linearize Simulink Block to Uncertain Model” on page 6-23.

3 Run the linearize command to compute an uncertain linearization. This command returns an
uss model.

For more information on linearization and how to validate linearization results, see “Linearization
Basics” (Simulink Control Design).

For an example of how to use the linearize command to compute an uncertain linearization, see
“Linearization of Simulink Models with Uncertainty” on page 6-46.

Using Uncertain Linearization for Analysis or Control Design
After computing an uncertain linearization, you can perform any analysis or design tasks you would
perform on any linear model, including:
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• Perform robustness analysis. See “Robustness and Worst-Case Analysis”.
• Perform robust control design. See “Robust Controller Tuning”.

See Also
linearize | ulinearize

Related Examples
• “Linearization of Simulink Models with Uncertainty” on page 6-46
• “Linearize Simulink Block to Uncertain Model” on page 6-23
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Linearize Simulink Block to Uncertain Model
This example shows how to make a Simulink® block linearize to an uncertain variable at the
command line. To learn how to specify an uncertain block linearization using the Simulink model
editor, see “Specify Uncertain Linearization for Core or Custom Simulink Blocks” on page 6-19.

For this example, open the Simulink model slexAircraftExample.

mdl = 'slexAircraftExample';
open_system(mdl)
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Examine the subsystem Aircraft Dynamics Model.

subsys = [mdl,'/Aircraft Dynamics Model'];
open_system(subsys)
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Suppose you want to specify the following uncertain real values for the gain blocks Mw and Zd.

Mw_unc = ureal('Mw',-0.00592,'Percentage',50);
Zd_unc = ureal('Zd',-63.9979,'Percentage',30);

To specify these values as the linearization for these blocks, create a BlockSubs structure to pass to
the linearize function. The field names are the names of the Simulink blocks, and the values are
the corresponding uncertain values. Note that in this model, the name of the Mw block is Gain4, and
the name of the Zd block is Gain5.

Mw_name = [subsys,'/Gain4'];
Zd_name = [subsys,'/Gain5'];

BlockSubs(1).Name = Mw_name;
BlockSubs(1).Value = Mw_unc;
BlockSubs(2).Name = Zd_name;
BlockSubs(2).Value = Zd_unc;

Compute the uncertain linearization. linearize linearizes the model at operating point specified in
the model, making the substitutions specified by BlockSubs. The result is an uncertain state-space
model with an uncertain real parameter for each of the two uncertain gains.

sys = linearize(mdl,BlockSubs)

sys =

  Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 7 states.
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  The model uncertainty consists of the following blocks:
    Mw: Uncertain real, nominal = -0.00592, variability = [-50,50]%, 1 occurrences
    Zd: Uncertain real, nominal = -64, variability = [-30,30]%, 1 occurrences

Type "sys.NominalValue" to see the nominal value, "get(sys)" to see all properties, and "sys.Uncertainty" to interact with the uncertain elements.

Examine the uncertain model response.

step(sys)
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step takes random samples and provides a sense of the range of responses within the uncertainty of
the linearized model.

See Also
linearize

Related Examples
• “Specify Uncertain Linearization for Core or Custom Simulink Blocks” on page 6-19
• “Obtain Uncertain State-Space Model from Simulink Model” on page 6-19
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Stability Margins of a Simulink Model
This example illustrates how to compute classical and disk-based gain and phase margins of a control
loop modeled in Simulink®. To compute stability margins, linearize the model to extract the open-
loop responses at one or more operating points of interest. Then, use allmargin or diskmargin to
compute the classical or disk-based stability margins, respectively.

MIMO Control Loop

For this example, use the Simulink model airframemarginEx.slx. This model is based on the
example “Trimming and Linearizing an Airframe” (Simulink Control Design).

open_system('airframemarginEx.slx')

The system is a two-channel feedback loop. The plant is the one-input, two-output subsystem
Airframe Model, and the controller is a two-input, one-output system whose inputs are the normal
acceleration az and pitch rate q, and whose output is the Fin Deflection signal.

Loop Transfer Functions

To compute the gain margins and phase margins for this feedback system, linearize the model to get
the open-loop transfer functions at the plant outputs and input. You can do so using linearization
analysis points of the loop-transfer type. For more information about linearization analysis points, see
“Specify Portion of Model to Linearize” (Simulink Control Design).

Create a loop-transfer analysis point for the plant input, which is the first output port of the q
Control subsystem.

ioInput = linio('airframemarginEx/q Control',1,'looptransfer');

Similarly, create analysis points for the plant outputs. Because there are two outputs, specify these
analysis points as a vector of linearization I/O objects.

ioOutput(1) = linio('airframemarginEx/Airframe Model',1,'looptransfer');
ioOutput(2) = linio('airframemarginEx/Airframe Model',2,'looptransfer');
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Linearize the model to obtain the open-loop transfer functions. For this example, use the operating
point specified in the model. The loop transfer at the plant input is SISO, while the loop transfer at
the outputs is 2-by-2.

Li = linearize('airframemarginEx',ioInput);   % SISO
Lo = linearize('airframemarginEx',ioOutput);  % MIMO

Classical Gain and Phase Margins

To compute the classical gain margins and phase margins, use allmargin. For an open-loop transfer
function, allmargin assumes a negative-feedback loop.

The open-loop transfer function returned by the linearize command is the actual linearized open-
loop response of the model at the analysis point. Thus, for an open-loop response L, the closed-loop
response of the entire model is a positive feedback loop.

Therefore, use -L to make allmargin compute the stability margins with positive feedback.
Compute the classical gain and phase margins at the plant input.

Si = allmargin(-Li)

Si = 

  struct with fields:

     GainMargin: [0.1633 17.6572]
    GMFrequency: [1.5750 47.5284]
    PhaseMargin: 44.4554
    PMFrequency: 5.3930
    DelayMargin: 14.3869
    DMFrequency: 5.3930
         Stable: 1

The structure Si contains information about classical stability margins. For instance,
Li.GMFrequency gives the two frequencies at which the phase of the open-loop response crosses –
180°. Li.GainMargin gives the gain margin at each of those frequencies. The gain margin is the
amount by which the loop gain can vary at that frequency while preserving closed-loop stability.

 Stability Margins of a Simulink Model

6-29



Compute the stability margins at the plant output.

So = allmargin(-Lo);

Because there are two output channels, allmargin returns an array containing one structure for
each channel. Each entry contains the margins computed for that channel with the other feedback
channel closed. Index into the structure So to obtain the stability margins for each channel. For
instance, examine the margins with respect to gain variations or phase variations at the q output of
the plant, which is the second output.

So(2)

ans = 

  struct with fields:

     GainMargin: [0.3456 17.4301]
    GMFrequency: [3.4362 49.8484]
    PhaseMargin: [-78.2436 52.6040]
    PMFrequency: [1.5686 6.5428]
    DelayMargin: [313.5079 14.0324]
    DMFrequency: [1.5686 6.5428]
         Stable: 1

Disk-Based Gain and Phase Margins

Disk margins provide a stronger guarantee of stability than the classical gain and phase margins.
Disk-based margin analysis models gain and phase variations as a complex uncertainty on the open-
loop system response. The disk margin is the smallest such uncertainty that is compatible with
closed-loop stability. (For general information about disk margins, see “Stability Analysis Using Disk
Margins” on page 2-2.)

To compute disk-based margins, use diskmargin. Like allmargin, the diskmargin command
assumes a negative-feedback system. Thus, use -Li to compute the disk-based margins at the plant
input.

DMi = diskmargin(-Li)

DMi = 

  struct with fields:

           GainMargin: [0.4419 2.2628]
          PhaseMargin: [-42.3153 42.3153]
           DiskMargin: 0.7740
           LowerBound: 0.7740
           UpperBound: 0.7740
            Frequency: 4.2515
    WorstPerturbation: [1x1 ss]

The field DMi.GainMargin tells you that the open-loop gain at the plant input can vary by any factor
between about 0.44 and about 2.26 without loss of closed-loop stability. Disk-based margins take into
account variations at all frequencies.
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For a MIMO loop transfer function such as the response Lo at the plant outputs, there are two types
of disk-based stability margins. The loop-at-a-time margins are the stability margins in each channel
with the other loop closed. The multiloop margins are the margins for independent variations in gain
(or phase) in both channels simultaneously. diskmargin computes both.

[DMo,MMo] = diskmargin(-Lo);

The loop-at-a-time margins are returned as a structure array DMo with one entry for each channel.
For instance, examine the margins for gain variations or phase variations at the q output of the plant
with the az loop closed, and compare with the classical margins given by So(2) above.

DMo(2)

ans = 

  struct with fields:

           GainMargin: [0.3771 2.6521]
          PhaseMargin: [-48.6811 48.6811]
           DiskMargin: 0.9047
           LowerBound: 0.9047
           UpperBound: 0.9047
            Frequency: 4.4982
    WorstPerturbation: [2x2 ss]

The multiloop margin, MMo, takes into account loop interaction by considering simultaneous
variations in gain (or phase) across all feedback channels. This typically gives the most realistic
stability margin estimate for multiloop control systems.

MMo

MMo = 

  struct with fields:

           GainMargin: [0.6238 1.6030]
          PhaseMargin: [-26.0867 26.0867]
           DiskMargin: 0.4633
           LowerBound: 0.4633
           UpperBound: 0.4643
            Frequency: 3.6830
    WorstPerturbation: [2x2 ss]

MMo.GainMargin shows that the gains in both output channels can vary independently by factors
between about 0.62 and 1.60 without compromising closed-loop stability. MMo.PhaseMargin shows
that stability is preserved for independent phase variations in each channel of up to ±26°. Use
diskmarginplot to examine the multiloop margins graphically.

diskmarginplot(-Lo)
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This shows the disk-based gain and phase margins as a function of frequency. The MMo values
returned by diskmargin correspond to the weakest disk margin across frequency.

Margins at Multiple Operating Points

When you use linearize, you can provide multiple operating points to generate an array of
linearizations of the system. allmargin and diskmargin can operate on linear model arrays to
return the margins at multiple operating points. For example, linearize the airframe system at three
simulation snapshot times.

Snap = [0; 2; 5];
LiSnap = linearize('airframemarginEx',ioInput,Snap);
LoSnap = linearize('airframemarginEx',ioOutput,Snap);

LiSnap is a 3-by-1 array of SISO linear models, one for the loop transfer at the plant input obtained
at each snapshot time. Similarly, LoSnap is a 3-by-1 array of 2-input, 2-output linear models
representing the loop transfers at the plant outputs at each snapshot time. Compute the classical gain
and phase margins at the plant inputs at the three snapshot times.

SiSnap = allmargin(-LiSnap);

Each entry in the structure array SiSnap contains the classical margin information for the
corresponding snapshot time. For instance, examine the classical margins for the second entry, t = 2
s.

SiSnap(2)
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ans = 

  struct with fields:

     GainMargin: [0.0171 18.2489]
    GMFrequency: [0.0502 51.4426]
    PhaseMargin: 93.1051
    PMFrequency: 2.8476
    DelayMargin: 57.0662
    DMFrequency: 2.8476
         Stable: 1

Compute the disk margins at the plant outputs.

[DMoSnap,MMoSnap] = diskmargin(-LoSnap);

Because there are two feedback channels and three snapshot times, the structure array containing
the loop-at-a-time disk margins has dimensions 2-by-3. The first dimension is for the feedback
channels, and the second is for the snapshot times. In other words, DMoSnap(j,k) contains the
margins for the channel j at the snapshot time k. For instance, examine the disk margins in the
second feedback channel at the third snapshot time, t = 5 s.

DMoSnap(2,3)

ans = 

  struct with fields:

           GainMargin: [0.1345 7.4338]
          PhaseMargin: [-74.6771 74.6771]
           DiskMargin: 1.5257
           LowerBound: 1.5257
           UpperBound: 1.5257
            Frequency: 24.1993
    WorstPerturbation: [2x2 ss]

There is only one set of multiloop margins for each snapshot time, so MMoSnap is a 3-by-1 structure
array.

As before, you can also plot the multiloop margins. There are now three curves, one for each
snapshot time. Click on a curve to identify which snapshot time it corresponds to.

diskmarginplot(-LoSnap)
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See Also
allmargin | diskmargin | diskmarginplot | linearize

More About
• “Stability Analysis Using Disk Margins” on page 2-2
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Robustness Analysis in Simulink
This example shows how to use Simulink® blocks and helper functions provided by Robust Control
Toolbox™ to specify and analyze uncertain systems in Simulink and how to use these tools to perform
Monte Carlo simulations of uncertain systems.

Introduction

The Simulink model usim_model consists of an uncertain plant in feedback with a sensor:

open_system('usim_model')

The plant is a first-order model with two sources of uncertainty:

• Real pole whose location varies between -10 and -4
• Unmodeled dynamics which amount to 25% relative uncertainty at low frequency rising to 100%

uncertainty at 130 rad/s.

The feedback path has a cheap sensor which is modeled by a first-order filter at 20 rad/s and an
uncertain gain ranging between 0.1 and 2. To specify these uncertain variables, type

% First-order plant model
unc_pole = ureal('unc_pole',-5,'Range',[-10 -4]);
plant = ss(unc_pole,5,1,1);

% Unmodeled plant dynamics
input_unc = ultidyn('input_unc',[1 1]);
wt = makeweight(0.25,130,2.5);

% Sensor gain
sensor_gain = ureal('sensor_gain',1,'Range',[0.1 2]);
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Simulink Blocks for Uncertainty Modeling and Analysis

The RCTblocks library contains blocks to model and analyze uncertainty effects in Simulink. To open
the library, type

open('RCTblocks')

The Uncertain State Space block lets you specify uncertain linear systems (USS objects).
usim_model contains three such blocks which are highlighted in blue. The dialog for the "Plant"
block appears below.
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In this dialog box,

• The "Uncertain system variable" parameter specifies the uncertain plant model (first-order model
with uncertain pole unc_pole).

• The "Uncertainty value" parameter specifies values for the block's uncertain variables (unc_pole
in this case).

uval is a structure whose field names and values are the uncertain variable names and values to use
for simulation. You can set uval to [] to use nominal values for the uncertain variables or vary uval
to analyze how uncertainty affects the model responses.

The MultiPlot Graph block is a convenient way to visualize the response spread as you vary the
uncertainty. This block superposes the simulation results obtained for each uncertainty value.
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Monte Carlo Simulation of Uncertain Systems

To easily control the uncertainty value used for simulation, usim_model uses the same "Uncertainty
value" uval in all three Uncertain State Space blocks. Setting uval to [] simulates the closed-
loop response for the nominal values of unc_pole, input_unc, and sensor_gain:

uval = [];   % use nominal value of uncertain variables
sim('usim_model',10);   % simulate response

To analyze how uncertainty affects the model responses, you can use the ufind and usample
commands to generate random values of unc_pole, input_unc, and sensor_gain. First use ufind
to find the Uncertain State Space blocks in usim_model and compile a list of all uncertain
variables in these blocks:

[uvars,pathinfo] = ufind('usim_model');
uvars          % uncertain variables

uvars = 

  struct with fields:

      input_unc: [1x1 ultidyn]
    sensor_gain: [1x1 ureal]
       unc_pole: [1x1 ureal]
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pathinfo(:,1)  % paths to USS blocks

ans =

  3x1 cell array

    {'usim_model/Plant'                   }
    {'usim_model/Sensor Gain'             }
    {'usim_model/Unmodeled Plant Dynamics'}

Then use usample to generate uncertainty values uval consistent with the specified uncertainty
ranges. For example, you can simulate the closed-loop response for 10 random values of unc_pole,
input_unc, and sensor_gain as follows:

for i=1:10;
   uval = usample(uvars);   % generate random instance of uncertain variables
   sim('usim_model',10);   % simulate response
end
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The MultiPlot Graph window now shows 10 possible responses of the uncertain feedback loop.
Note that each uval instance is a structure containing values for the uncertain variables input_unc,
sensor_gain, and unc_pole:

uval  % sample value of uncertain variables

uval = 

  struct with fields:

      input_unc: [1x1 ss]
    sensor_gain: 0.5893
       unc_pole: -4.9557

Randomized Simulations

If needed, you can configure the model to use a different uncertainty value uval for each new
simulation. To do this, add uvars to the Base or Model workspace and attach the usample call to the
model InitFcn:

bdclose('usim_model'), open_system('usim_model')
% Write the uncertain variable list in the Base Workspace
evalin('base','uvars=ufind(''usim_model'');')
% Modify the model InitFcn
set_param('usim_model','InitFcn','uval = usample(uvars);');

% Simulate ten times (same as pressing "Start simulation" ten times)
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for i=1:10;
   sim('usim_model',10);
end

% Clean up
set_param('usim_model','InitFcn','');

Again the MultiPlot Graph window shows 10 possible responses of the uncertain feedback loop.

Linearization of Uncertain Simulink Models

If you have Simulink Control Design™, you can use the same workflow to linearize and analyze
uncertain systems in the frequency domain. For example, you can plot the closed-loop Bode response
for 10 random samples of the model uncertainty:

clear sys
wmax = 50;  % max natural frequency for unmodeled dynamics (input_unc)
for i=1:10;
   uval = usample(uvars,1,wmax);
   sys(:,:,i) = linearize('usim_model');
end

bode(sys)
title('Ten linearizations of usim\_model');
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If the operating point is independent of the uncertain variables, a faster approach is to compute an
uncertain linearization (USS object) in one shot using the ulinearize command:

usys = ulinearize('usim_model')

usys =

  Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 3 states.
  The model uncertainty consists of the following blocks:
    input_unc: Uncertain 1x1 LTI, peak gain = 1, 1 occurrences
    sensor_gain: Uncertain real, nominal = 1, range = [0.1,2], 1 occurrences
    unc_pole: Uncertain real, nominal = -5, range = [-10,-4], 1 occurrences

Type "usys.NominalValue" to see the nominal value, "get(usys)" to see all properties, and "usys.Uncertainty" to interact with the uncertain elements.
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You can then sample the uncertain state-space model usys to generate a similar Bode plot:

bode(usample(usys,10,wmax))
title('Ten linearizations of usim\_model');
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See Also
Blocks
MultiPlot Graph | Uncertain State Space

Functions
ulinearize | usample

More About
• “Stability Margins of a Simulink Model” on page 6-28
• “Compute Uncertain State-Space Models from Simulink Models” on page 6-19
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Linearization of Simulink Models with Uncertainty
This example shows how to compute uncertain linearizations using Robust Control Toolbox™ and
Simulink® Control Design™. There are two convenient workflows offered depending on how Simulink
is used. The resulting uncertain linearizations are in the form of the uncertain state space (USS) data
structure in the Robust Control Toolbox, which can be used by the analysis functions in Robust
Control Toolbox.

Introduction

The graphical user interface in Simulink is a natural environment to model and simulate control
systems. Using the linearization capabilities in Simulink Control Design and the uncertainty elements
in Robust Control Toolbox, you can specify uncertainty on specific blocks in a Simulink model and
then extract an uncertain linearized model.

In this example, the performance of a PID controller is examined in the presence of uncertainty.
There are two approaches available to compute linearizations of uncertain systems. Each of the
approaches is designed to meet different needs when working in Simulink. These approaches are
summarized in the following sections.

Approach #1: Using Uncertain State Space Blocks

This first approach is most applicable when you are already using Uncertain State Space blocks as
part of your control system design process in Simulink. As shown in the example “Robustness
Analysis in Simulink” on page 6-35, the Uncertain State Space block in Robust Control Toolbox lets
you specify uncertainty in a Simulink model.

In the following example, both the plant and sensor dynamics are uncertain. The uncertainty on the
plant dynamics includes:

• Real pole unc_pole whose location varies between -10 and -4
• Unmodeled dynamics input_unc (25% relative uncertainty at low frequency rising to 100%

uncertainty at 130 rad/s).

unc_pole = ureal('unc_pole',-5,'Range',[-10 -4]);
plant = ss(unc_pole,5,1,0);
wt = makeweight(0.25,130,2.5);
input_unc = ultidyn('input_unc',[1 1]);

The uncertain sensor dynamics are defined to be

sensor_pole = ureal('sensor_pole',-20,'Range',[-30 -10]);
sensor = tf(1,[1/(-sensor_pole) 1]);

The rct_ulinearize_uss model uses Uncertain State Space blocks (highlighted in blue) to model
this uncertainty:

mdl = 'rct_ulinearize_uss';
open_system('rct_ulinearize_uss')
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This Simulink model is ready to compute an uncertain linearization. The linear model has an input at
the reference block rct_ulinearize_uss/Reference and an output of the plant
rct_ulinearize_uss/Uncertain Plant. These linearization input and output points are
specified using Simulink Control Design. The linearization points are found using the following
command:

io = getlinio(mdl);

The uncertain linearization is computed using the command ulinearize. This command returns an
uncertain state space (USS) object that depends on the uncertain variables input_unc,
sensor_pole, and unc_pole:

sys_ulinearize = ulinearize(mdl,io)

sys_ulinearize =

  Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 5 states.
  The model uncertainty consists of the following blocks:
    input_unc: Uncertain 1x1 LTI, peak gain = 1, 1 occurrences
    sensor_pole: Uncertain real, nominal = -20, range = [-30,-10], 1 occurrences
    unc_pole: Uncertain real, nominal = -5, range = [-10,-4], 1 occurrences

Type "sys_ulinearize.NominalValue" to see the nominal value, "get(sys_ulinearize)" to see all properties, and "sys_ulinearize.Uncertainty" to interact with the uncertain elements.

This concludes the first approach. Close the Simulink model:

bdclose(mdl)

Approach #2: Using Built-in Simulink Blocks

The second approach uses the Simulink Control Design user interface for block linearization
specification to specify uncertainty for linearization. The block linearization specification feature in
Simulink Control Design allows any Simulink block to be replaced by either a gain, an LTI object, or a
Robust Control Toolbox uncertain variable. This approach is best suited when working with models
that do not use the Uncertain State Space block. The primary advantage of this approach is that the
specification of the uncertainty does not impact any other operation in Simulink such as simulation.

A modified version of the original model using only built-in Simulink blocks is shown below.

mdl = 'rct_ulinearize_builtin';
open_system(mdl);
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By right clicking on the rct_ulinearize_builtin/Plant block and selecting the menu item
Linear Analysis->Specify Linearization, you can specify what value this block should linearize to.
If you enter the expression plant*(1+wt*input_unc) in the dialog box shown below, the "Plant"
block will linearize to the corresponding uncertain state-space model (USS object).

Similarly, you can assign the uncertain model sensor as linearization for the block
rct_ulinearize_builtin/Sensor Gain.

You can now linearize rct_ulinearize_builtin using the Simulink Control Design command
linearize:

io = getlinio(mdl);
sys_linearize = linearize(mdl,io)

sys_linearize =

  Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 5 states.
  The model uncertainty consists of the following blocks:
    input_unc: Uncertain 1x1 LTI, peak gain = 1, 1 occurrences
    sensor_pole: Uncertain real, nominal = -20, range = [-30,-10], 1 occurrences
    unc_pole: Uncertain real, nominal = -5, range = [-10,-4], 1 occurrences

Type "sys_linearize.NominalValue" to see the nominal value, "get(sys_linearize)" to see all properties, and "sys_linearize.Uncertainty" to interact with the uncertain elements.
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The resulting model is an uncertain state-space (USS) model equivalent to the uncertain linearization
computed using the first approach.

Leveraging the Uncertain Linearization Result

Both linearization approaches produce an uncertain state-space (USS) object which can be analyzed
with standard Robust Control Toolbox commands. In this example, this USS model is used to find the
worst-case gain of the linearized closed-loop response.

[maxg,worstun] = wcgain(sys_linearize);

The resulting worst-case values for the uncertain variables can then be used to compare against the
nominal response. This comparison indicates that the PID performance is not robust to the plant and
sensor uncertainty.

sys_worst = usubs(sys_linearize,worstun);
step(sys_linearize.NominalValue,sys_worst)
legend('Nominal','Worst-case');

This concludes the example. Close the Simulink model:

bdclose(mdl);

See Also
Blocks
Uncertain State Space
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Functions
ulinearize

More About
• “Specify Uncertainty Using Uncertain State Space Blocks” on page 6-4
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